Abstract:
The invention enables a compromise between DC offset rejection and image rejection through the use of a bandpass filter having a variable center frequency.
Abstract:
A first low-noise amplifier is connected to a first receiving processing unit through a first cable and a bypass circuit is provided in parallel to the first low-noise amplifier so as to bypass the first low-noise amplifier. In the case that the intensity of broadcasting signal is more than a predetermined value, when the C/N is more than a first predetermined value and less than a second predetermined value higher than the first predetermined value, the broadcasting signal is transmitted to the first cable through the first low-noise amplifier, and when the C/N is less than the first predetermined value or more than the second predetermined value, the broadcasting signal is not input to the first low-noise amplifier but transmitted to the first cable through the bypass circuit.
Abstract:
Apparatus and methods for performing automatic gain control in a radar system. One embodiment of the system includes an attenuator that controls gain of signals received from a radar receiver. A digital signal processor determines coarse gain correction based on digitized noise data for a plurality of channels, determines fine gain correction based on the residual error after the coarse gain, and determines frequency vs. gain curve correction based on the digitized noise data for a plurality of channels and a mathematical model of frequency gain across a noise spectrum for the radar system. The result of the processor is a gain control signal that is sent to the attenuator to perform hardware gain control and a channel specific scale factor for software gain control. In one embodiment, the processor generates the gain control signal during an inactive scan mode of the radar system.
Abstract:
The present invention discloses a proactive gain control system for a communications receiver. The proactive gain control system includes a variable gain module for outputting an output signal in response to an input signal. A detector detects the output signal and outputs a detection signal representing a signal strength of the output signal. A traffic monitor monitors the output signal and outputs a traffic profile signal indicating that a traffic profile for the input signal will change. A gain computing module outputs a gain adjustment value in response to the detection signal and the traffic profile signal. A gain control module outputs a gain control signal to the variable gain module, which determines a gain between the input and output signals, in response to the gain adjustment value.
Abstract:
The invention enables a compromise between DC offset rejection and image rejection through the use of a bandpass filter having a variable center frequency.
Abstract:
Embodiments include systems and methods for baseline wander correction gain adaptation in receiver circuits. Some embodiments operate in context of an alternating current coupled transceiver communicating data signals over a high-speed transmission channel, such that the receiver system includes an AC-coupled data input and a feedback loop with a data slicer and an error slicer. A baseline wander correction (BWC) circuit can be part of the feedback loop and can generate a feedback signal corresponding to low-pass-filtered bits data from the data slicer output and having a gain generated according to pattern-filtered error data from the error slicer output. For example, gain adaptation is performed according to error information corresponding to a detected relatively high-frequency data pattern following a long low-frequency pattern.
Abstract:
The AGC threshold of electric intensity level is set by the signal processor portion 107 in response to the measured result of the error rate measuring circuit 109 that measures the error rate of the received signal, and the gain control operation of the gain control circuit 106 is caused to start when the electric field intensity detected by the field intensity detector 105 reaches the threshold of electric intensity level. Accordingly, the optimum AGC threshold of electric intensity level can be set to meet the radio wave situation in which the radio receiver, i.e., the receiving situation of the received signal and also the gain control of the gain controlling means can be achieved to optimize the signal quality of the received signal in the situation of either the IM characteristic or the electric field variation characteristic, e.g., under the environment of the strong electric field IM or the environment in which the electric field is changed strongly.
Abstract:
A receiver for processing a signal comprises a first amplifier circuit and a second amplifier circuit. The first amplifier circuit is operated in association with a first gain profile. The second amplifier circuit is operated in association with a second gain profile. The receiver further comprises a gain control circuit that determines a quality indicator associated with a modulated signal. The gain control circuit adjusts the first gain profile and the second gain profile based at least in part upon the determined quality indicator.
Abstract:
A receiver for processing a signal comprises a first amplifier circuit and a second amplifier circuit. The first amplifier circuit is operated in association with a first gain profile. The second amplifier circuit is operated in association with a second gain profile. The receiver further comprises a gain control circuit that determines a quality indicator associated with a modulated signal. The gain control circuit adjusts the first gain profile and the second gain profile based at least in part upon the determined quality indicator.