Abstract:
A receiver for processing a signal comprises a first amplifier circuit and a second amplifier circuit. The first amplifier circuit is operated in association with a first gain profile. The second amplifier circuit is operated in association with a second gain profile. The receiver further comprises a gain control circuit that determines a quality indicator associated with a modulated signal. The gain control circuit adjusts the first gain profile and the second gain profile based at least in part upon the determined quality indicator.
Abstract:
A receiver for processing a signal comprises a first amplifier circuit and a second amplifier circuit. The first amplifier circuit is operated in association with a first gain profile. The second amplifier circuit is operated in association with a second gain profile. The receiver further comprises a gain control circuit that determines a quality indicator associated with a modulated signal. The gain control circuit adjusts the first gain profile and the second gain profile based at least in part upon the determined quality indicator.
Abstract:
A radio-frequency receiver includes an RF amplification circuit which amplifies a received RF signal and generates an amplified RF signal, a mixing circuit which converts the amplified RF signal into an intermediate-frequency signal, an IF amplification circuit which generates an amplified IF signal, a first level detection circuit which detects a level of the amplified RF signal, a second level detection circuit which detects a level of the IF signal, a third level detection circuit which detects a level of the amplified IF signal, a RF reference level generation circuit which generates an RF reference level based on one of respective detection signal levels of the first and second level detection circuits, and an RF gain control circuits which controls an amplification gain of the RF amplification circuit so that a detection signal level of the third level detection circuit becomes equal to the RF reference level.
Abstract:
A radio-frequency receiver includes an RF amplification circuit which amplifies a received RF signal and generates an amplified RF signal, a mixing circuit which converts the amplified RF signal into an intermediate-frequency signal, an IF amplification circuit which generates an amplified IF signal, a first level detection circuit which detects a level of the amplified RF signal, a second level detection circuit which detects a level of the IF signal, a third level detection circuit which detects a level of the amplified IF signal, a RF reference level generation circuit which generates an RF reference level based on one of respective detection signal levels of the first and second level detection circuits, and an RF gain control circuits which controls an amplification gain of the RF amplification circuit so that a detection signal level of the third level detection circuit becomes equal to the RF reference level.
Abstract:
The present invention discloses a proactive gain control system for a communications receiver. The proactive gain control system includes a variable gain module for outputting an output signal in response to an input signal. A detector detects the output signal and outputs a detection signal representing a signal strength of the output signal. A traffic monitor monitors the output signal and outputs a traffic profile signal indicating that a traffic profile for the input signal will change. A gain computing module outputs a gain adjustment value in response to the detection signal and the traffic profile signal. A gain control module outputs a gain control signal to the variable gain module, which determines a gain between the input and output signals, in response to the gain adjustment value.
Abstract:
An automatic gain control (AGC) circuit includes a number of attenuation circuits connected in series relative to a reception signal, a of variable gain amplifiers to which the reception signal and each output signal from the attenuation circuits are fed, respectively, a signal deriving circuit connected to output terminals of the variable gain amplifiers for deriving a level-controlled output signal, and a control current generating circuit for generating a control current having a predetermined characteristic out of first and second AGC voltages, wherein the control current outputted from the control current generating circuit is supplied to the variable gain amplifiers as a control signal for switching an operation thereof and for controlling a gain thereof, and a feedback control current corresponding to the control current is performed by the control current generating circuit.
Abstract:
A receiver includes at least a first amplifier configured to receive a received signal and provide a first amplified signal based thereon, a mixer configured to receive the first amplified signal and provide an intermediate frequency signal based thereon and a second amplifier configured to receive the intermediate frequency signal and provide a second amplified signal based thereon. An automatic gain controller for the receiver is configured to, based on a first overload signal indicative of a first frequency range of the first amplified signal having one or more frequency components exceeding a first maximum signal power threshold and a second overload signal indicative of a second frequency range, narrower than the first, of the second amplified signal having one or more frequency components exceeding a second maximum signal power threshold, provide for control of a respective gain of one or both of the first amplifier and the second amplifier.
Abstract:
A method and apparatus for generating the adaptive gain control signals in a communications receiver is disclosed. The present invention can be used with existing two stage gain architectures, and overcomes many undesirable characteristics of the previous mechanism. An apparatus is presented wherein each of a plurality of RF AGC gain controllable amplifiers are individually controlled by individual AGC control signals generated by an AGC controller so that the level of the output signal from each of the RF AGC gain controllable amplifiers is individually optimized for tuner performance.
Abstract:
The present invention discloses a proactive gain control system for a communications receiver. The proactive gain control system includes a variable gain module for outputting an output signal in response to an input signal. A detector detects the output signal and outputs a detection signal representing a signal strength of the output signal. A traffic monitor monitors the output signal and outputs a traffic profile signal indicating that a traffic profile for the input signal will change. A gain computing module outputs a gain adjustment value in response to the detection signal and the traffic profile signal. A gain control module outputs a gain control signal to the variable gain module, which determines a gain between the input and output signals, in response to the gain adjustment value.