Abstract:
The gain of an amplifier in a receiver operating in a cellular communication system is controlled by determining one or more gain variability metrics, which are then used to produce first and second threshold values. A frequency difference between a current carrier frequency and a target carrier frequency is ascertained and then compared to the threshold values. Target gain setting production is based on comparison results: If the frequency difference is larger than the first threshold, a full automatic gain control algorithm is performed; if the frequency difference is smaller than the first threshold and larger than the second threshold, an optimized automatic gain control algorithm is performed, wherein the optimized automatic gain control algorithm uses a current gain setting as a starting point; and if the frequency difference is smaller than both the first and second thresholds, the current gain setting is used as the target gain setting.
Abstract:
A method and apparatus for power detection in a multi-mode communication device configured for operation in different modes or frequency bands. A detector monitors the power level of an amplified outgoing signal. The detector may be configured with a switch and two or more samplers. Responsive to the mode of operation, the detector adopts an optimal configuration to generate a power level feedback signal, which is provided to a digital signal processor or controller. Comparison of the power level feedback signal to a target value may occur to generate an amplifier control signal. The amplifier control signal controls the gain, applied by an amplifier, to the outgoing signal. During operation, the system monitors for a change in the mode of operation and upon responsive to a change, generates a switch control signal to reconfigure the detector configuration to match the new mode of operation.
Abstract:
An automatic gain control device includes an amplifier for a reception signal, a signal processing unit, a memory, and a control unit. The amplifier can set a gain. The signal processing unit extracts control data from an output from the amplifier and performs information processing for the data. The memory stores the gain setting value of the amplifier. The control unit controls the gain of the amplifier in accordance with a preset control algorithm. On the basis of the result obtained when the control unit computes a gain setting value stored in the memory in accordance with a preset algorithm, the control unit controls the gain of the amplifier in correspondence with operation of switching the frequency of a reception signal, which is accompanied by different frequency monitoring in the compressed mode by the signal processing unit. A radio communication terminal, a control method for an automatic gain control device, a control program for an automatic gain control device, an automatic gain control method, a radio communication system, and a radio communication method are also disclosed.
Abstract:
The variable power supply to an amplifier in an electrical circuit is dynamically controlled through the use of a lookup table responsive to one or more operating conditions of the electrical circuit. The lookup table is indexed by one or more of the operating conditions and the amount of amplification to be applied to an input signal to the amplifier is determined. One embodiment of the invention comprises a television transmitter circuit including a power amplifier circuit capable of amplifying a variable frequency COFDM or 8VSB input signal where the amount of amplification applied to the input signal is dynamically controlled through the use of a lookup table as a function of the frequency of the input signal.
Abstract:
The gain of an amplifier in a receiver operating in a cellular communication system is controlled by determining one or more gain variability metrics, which are then used to produce first and second threshold values. A frequency difference between a current carrier frequency and a target carrier frequency is ascertained and then compared to the threshold values. Target gain setting production is based on comparison results: If the frequency difference is larger than the first threshold, a first automatic gain control algorithm is performed; if the frequency difference is smaller than the first threshold and larger than the second threshold, a second automatic gain control algorithm is performed, wherein the second automatic gain control algorithm uses a current gain setting as a starting point; and if the frequency difference is smaller than both the first and second thresholds, the current gain setting is used as the target gain setting.
Abstract:
A method and apparatus for power detection in a multi-mode communication device configured for operation in different modes or frequency bands. A detector monitors the power level of an amplified outgoing signal. The detector may be configured with a switch and two or more samplers. Responsive to the mode of operation, the detector adopts an optimal configuration to generate a power level feedback signal, which is provided to a digital signal processor or controller. Comparison of the power level feedback signal to a target value may occur to generate an amplifier control signal. The amplifier control signal controls the gain, applied by an amplifier, to the outgoing signal. During operation, the system monitors for a change in the mode of operation and upon responsive to a change, generates a switch control signal to reconfigure the detector configuration to match the new mode of operation.
Abstract:
A transmission power control apparatus which reduces the number of steps required for adjustments of the transmission power control apparatus and performs transmission power control with high accuracy in a wide dynamic range. The apparatus has a first variable amplifying circuit (122) with the resolution of 1 dB and a second variable amplifying circuit (123) with the resolution of 0.1 dB, where a correction value calculating section (106) calculates a correction value to compensate for deterioration in the accuracy of transmission power caused by a change in environment due to frequency characteristics and temperature characteristics and another correction value to compensate for error in transmission power, a transmission power calculating section (107) calculates transmission power obtained by correcting with the correction value specified transmission power to output to a communicating party based on the received signal, and a first set value calculating section (108) and a second set value calculating section (109) calculate gain values to set on the first variable amplifying circuit (122) and second variable amplifying circuit (123) based on the corrected transmission power, respectively.
Abstract:
Disclosed is a method for controlling power level of received signal in an ultra wide band transmission system which uses multi frequency bands, and includes a pre-gain controller (PGC) and a voltage gain amplifier (VGA). The method for controlling a power level of a received signal includes the steps of: a) at the PGCs, detecting which multi frequency band is used in a transmitter of the transmission system; b) at the PGCs, obtaining the voltage gain owing to the discrepancy in the power levels of the received signals; and c) at the PGCs, compensating for the power loss based on the voltage gain.
Abstract:
The gain of an amplifier in a receiver operating in a cellular communication system is controlled by determining one or more gain variability metrics, which are then used to produce first and second threshold values. A frequency difference between a current carrier frequency and a target carrier frequency is ascertained and then compared to the threshold values. Target gain setting production is based on comparison results: If the frequency difference is larger than the first threshold, a full automatic gain control algorithm is performed; if the frequency difference is smaller than the first threshold and larger than the second threshold, an optimized automatic gain control algorithm is performed, wherein the optimized automatic gain control algorithm uses a current gain setting as a starting point; and if the frequency difference is smaller than both the first and second thresholds, the current gain setting is used as the target gain setting.
Abstract:
A disclosed radio communication apparatus includes an amplifier configured to amplify a signal received via one of multiple channels including a channel where frequency hopping is conducted; a signal strength measurement circuit configured to measure signal strength of the received signal; and a gain value computation unit configured to compute a gain value for the amplifier based on the signal strength measured by the signal strength measurement circuit. The gain value computation unit is configured to use values specific to the respective channels as coefficients of a function to compute the gain value.