Abstract:
An amplifier circuit is provided. The amplifier circuit includes an amplifier stage; a plurality of variable transistors connected to the amplifier stage; a transconductor connected to at least one of the plurality of variable transistors; and a hybrid differential envelope detector and full-wave rectifier connected to the transconductor.
Abstract:
An amplifier system may include a current source, an impedance element responsive to a current change, and a feedback controller generating a control signal based on impedance element response. Current source may supply current to a pair of output elements, one of which being controlled by an integrator, and a portion of the integrator. Impedance element may have terminals coupled to inputs of the output elements and may be configured to experience a change in voltage based on a change in current supplied to its input. Feedback controller may have a pair of inputs coupled to the terminals of impedance element and an output to control the current source based on a detected change in voltage across the impedance element. Current source may be varied based on the control signal to maintain a constant current supplied to the input of the impedance elements.
Abstract:
A dynamically biased baseband current amplifier is provided. The dynamically biased baseband current amplifier includes an input interface; a controller; a variable resistor network; an amplifier stage; a hybrid differential envelope detector and full-wave rectifier; a transconductor; a first variable transistor; a second variable transistor; a third variable transistor; and a fourth variable transistor.
Abstract:
A current charged into or discharged from a phase-compensating capacitor C1 in an output circuit is controlled by a level shift circuit so that the current is kept constant for input signals inputted to the input terminals IN+ and IN- of a differential amplifier circuit, and also a current charged into or discharged from a phase-compensating capacitor C2 is controlled by the current correcting circuit so that the current become equal to a constant current controlled by the level shift circuit, namely to a current charged into or discharged from the phase-compensating capacitor C1. Therefore, even if a quickly rising or falling signal is inputted into the differential amplifier circuit, the MOS transistor MP11 or MN11 is not set in an offset state, which prevents generation of an overshoot or an undershot in the output terminal.
Abstract:
A power efficient high output swing operational ("HOOP") amplifier for integrated circuit analog signal processing is described. The operational amplifier includes a differential input stage and an output stage. The differential input stage is powered by a regular power supply while the output stage is powered by a voltage multiplier which results in a high voltage output swing without sinking significant power from the voltage multiplier. The high output voltage (e.g., 23 volts) is achieved using low voltage MOS devices. An output isolation technique is utilized to prevent possible latchup and contention. The operational amplifier also features a bias boot scheme to achieve a faster settling time from power up. In addition, the present invention provides realization of frequency compensation with highest possible breakdown and reduced noise coupling. A bias arrangement between input and output stages of the operational amplifier is used to further help reduce the power drawn from the voltage multiplier and decrease the settling time.
Abstract:
An operational amplifier of MOSFET elements is disclosed which provides for a variable drive for an output stage that results in lower power dissipation and increased gain factor over comparable circuits using constant bias drive for the output stage. A bias section comprised of complementary MOS elements is connected to a single MOSFET that furnishes constant current to the signal input section of a differential amplifier section. The output of this differential amplifier is furnished by one path directly to one complementary MOSFET element of a high impedance output stage and by another path to a level shift section which provides an output to a second complementary MOSFET element of the output stage. Thus, the circuit functions under class A-B operation at low power dissipation and provides high open loop gain. Additional embodiments of the invention utilize three MOSFET elements in the level shift section or an additional output stage having an NPN transistor in combination with an N-channel MOSFET.
Abstract:
An amplifier circuit including an input amplifier, an output amplifier and a diode device is provided. The output amplifier is coupled to the input amplifier and outputs an output voltage. The diode device is coupled between an output end and an input end of the output amplifier. When a voltage difference between the output end and the input end of the output amplifier is greater than a barrier voltage of the diode device, the diode device is turned on, and an overshoot of the output voltage is reduced.
Abstract:
An amplifier system may include a current source, an impedance element responsive to a current change, and a feedback controller generating a control signal based on impedance element response. Current source may supply current to a pair of output elements, one of which being controlled by an integrator, and a portion of the integrator. Impedance element may have terminals coupled to inputs of the output elements and may be configured to experience a change in voltage based on a change in current supplied to its input. Feedback controller may have a pair of inputs coupled to the terminals of impedance element and an output to control the current source based on a detected change in voltage across the impedance element. Current source may be varied based on the control signal to maintain a constant current supplied to the input of the impedance elements.
Abstract:
The present disclosure describes self-biasing radio frequency circuitry. In some aspects a radio frequency (RF) signal is amplified via a circuit having a first transistor configured to source current to an output of the circuit and a second transistor configured to sink current from the output of the circuit, and another signal is provided, without active circuitry, from the output of the circuit to a gate of the first transistor effective to bias a voltage at the output of the circuit. By so doing, the output of the circuit can be biased without active circuitry which can reduce design complexity of and substrate area consumed by the circuit.
Abstract:
In an operational amplifier, a differential amplifying circuit is configured to amplify an input voltage inputted from the input terminal. An outputting transistor is connected to the output terminal. A driving transistor is connected to the differential amplifying circuit and the outputting transistor. The driving transistor turns on according to a control signal supplied from the differential amplifying circuit to the driving circuit. The driving transistor is also configured to drive the outputting transistor according to the control signal. A control signal reducing circuit, when a voltage is applied on the driving transistor through the outputting transistor, is configured to reduce the control signal within a range that the driving transistor is kept to on state. The voltage applied on the driving transistor exceeds a predetermined threshold voltage.