Abstract:
The embodiments described herein provide a device and method for an integrated white colored electromagnetic radiation source using a combination of laser diode excitation sources based on gallium and nitrogen containing materials and light emitting source based on phosphor materials. A violet, blue, or other wavelength laser diode source based on gallium and nitrogen materials may be closely integrated with phosphor materials, such as yellow phosphors, to form a compact, high-brightness, and highly-efficient, white light source. The phosphor material is provided with a plurality of scattering centers scribed on an excitation surface or inside bulk of a plate to scatter electromagnetic radiation of a laser beam from the excitation source incident on the excitation surface to enhance generation and quality of an emitted light from the phosphor material for outputting a white light emission either in reflection mode or transmission mode.
Abstract:
The invention relates to a radiation-emitting semiconductor chip comprising a semiconductor layer sequence having at least two active regions which generate electromagnetic radiation during operation and at least one reflective outer surface which is arranged to the side of each active region wherein the reflective outer surface includes an angle of at least 35° and at most 55° with a main extension plane of the semiconductor chip. The invention also relates to a method for producing a radiation-emitting semiconductor chip.
Abstract:
An amplified spontaneous emission, ASE, source device combining a superluminescent light emitting diode, SLED, with a semiconductor optical amplifier, SOA, the SLED and SOA being arranged in series so that the SLED acts as a seed and the SOA acts as a broadband amplifier for the SLED output. Both SLED and SOA have a structure made up of a succession of epitaxial semiconductor layers which form a waveguide comprising a core of active region layers and surrounding cladding layers. The SLED and SOA confinement factors of the SLED and SOA, wherein confinement factor is the percentage of the optical mode power in the active region layers, is designed so that the SLED confinement factor is greater than that of the SOA by at least 20%. This allow higher power outputs, because the SLED power limits imposed by the onset of non-linear effects and catastrophic optical damage can be circumvented.
Abstract:
Examples described herein generally relate to apparatus and methods for rapid thermal processing (RTP) of a substrate. The present disclosure discloses pulsed radiation sources, used to measure a broad range of low to high temperatures in the RTP chamber. In one example, two or more lasers, one of which emits pulses of radiation at 1,030 nm and one of which emits pulses of radiation at 1,080 nm, which measures temperatures below about 200° C., are used. In another example, two or more LEDs, one of which emits pulses of radiation at 1,030 nm and one of which emits pulses of radiation at 1,080 nm, are used. In yet another example, a broadband radiation source is used to emit pulses of radiation at least at 1,030 nm and 1,080 nm. These radiation sources are useful for detection of a broad range of low to high temperatures in the RTP chamber.
Abstract:
A system and method for providing laser diodes with broad spectrum is described. GaN-based laser diodes with broad or multi-peaked spectral output operating are obtained in various configurations by having a single laser diode device generating multiple-peak spectral outputs, operate in superluminescene mode, or by use of an RF source and/or a feedback signal. In some other embodiments, multi-peak outputs are achieved by having multiple laser devices output different lasers at different wavelengths.
Abstract:
This invention discloses a method for the fabrication of GaN-based vertical cavity surface-emitting devices featuring a silicon-diffusion defined current blocking layer (CBL). Such devices include vertical-cavity surface-emitting laser (VCSEL) and resonant-cavity light-emitting diode (RCLED). The silicon-diffused P-type GaN region can be converted into N-type GaN and thereby attaining a current blocking effect under reverse bias. And the surface of the silicon-diffused area is flat so the thickness of subsequent optical coating is uniform across the emitting aperture. Thus, this method effectively reduces the optical-mode field diameter of the device, significantly decreases the spectral width of LED, and produces single-mode emission of VCSEL.
Abstract:
An embodiment provides a phosphor composition and a light emitting device package comprising the same, wherein the phosphor composition comprises green phosphor, amber phosphor, and red phosphor, wherein the amber phosphor is expressed as chemical formula Lim−2XSi12-m−nAlm+nOnN16-n:Eu2+, where 2≦m≦5, 2≦n≦10, 0.01≦X≦1. The light emitting element package of the embodiment can display white light having improved brightness and color rendering index.
Abstract:
A superluminescent diode and a method for implementing the same, wherein the method includes growing a first epi layer on top of an SI (semi-insulating substrate); re-growing a butt based on the first epi layer; forming a tapered SSC (spot size converter) on the re-grown butt layer; forming an optical waveguide on an active area that is based on the first epi layer and on an SSC area that is based on the tapered SSC; forming an RWG on the optical waveguide; and forming a p-type electrode and an n-type electrode.
Abstract:
A light emitting device includes a semiconductor light emitting element; a mounting substrate; a support substrate; a joining layer which joins the semiconductor light emitting element and the mounting substrate together, is a sintered body of metal particles, and has a pore; and a joining layer which joins the mounting substrate and the support substrate together, is a sintered body of metal particles, and has a pore, in which a porosity of the joining layer is lower than a porosity of the joining layer.
Abstract:
A light source includes a control unit that controls currents injected into at least one light emitting region and a light emission spectrum conversion region. The at least one light emitting region includes a first light emitting region and a second light emitting region different from the first light emitting region, light that is emitted from the first light emitting region and passes through the light emission spectrum conversion region is combined with the light that is emitted from the first or second light emitting region and does not pass through the light emission spectrum conversion region. The control unit controls the currents injected into the light emission spectrum conversion region and the first light emitting region so that the current density of the light emission spectrum conversion region is smaller than the current density of the first light emitting region.