摘要:
The invention relates to an infrared-transmitting high-sensitivity visible light detector and its preparation method. The detector is composed of passivation layer (14), upper electrode (13), heterojunction (15), lower electrode (3), and intrinsic monocrystalline silicon substrate (2). The upper electrode (13) is the material that is electrically conductive and transparent to visible light and infrared light. The heterojunction (15) is divided into heterojunction upper layer (5) and heterojunction lower layer (4), wherein the upper heterojunction layer (5) is a nano film sensitive to visible light and capable of transmitting infrared ray, and the lower heterojunction layer (4) is intrinsic monocrystalline silicon. When visible light and infrared light pass through the upper electrode (13) and the heterojunction upper layer (5), the visible light excites electron-hole pairs in the heterojunction (15), which are collected by the upper and lower electrodes and flow out through longitudinally arranged metal columns, while infrared light passes through the whole detection structure, so that visible light can be detected without affecting infrared transmission. The distance between the electrode and the junction zone is very small, which can reduce the recombination rate of electron-hole pairs before reaching the electrode and improve the collection efficiency of photo-generated carriers. The structural design of longitudinal metal reduces light shielding and improves sensitivity.
摘要:
A photosensitive sensor, a manufacturing method thereof and a display panel are provided. The photosensitive sensor includes a first type semiconductor layer, an intrinsic semiconductor layer disposed on a side of the first type semiconductor layer, and a second type semiconductor layer disposed on a side of the intrinsic semiconductor layer away from the first type semiconductor layer. The intrinsic semiconductor layer is provided with metal particles capable of generating a surface plasmon effect. The metal particles are dispersely distributed in the intrinsic semiconductor layer.
摘要:
The present disclosure relates to a semiconductor device, an array substrate, and a method for fabricating the semiconductor device. The semiconductor device comprises a substrate, a thin film transistor formed on the substrate, and a first light detection structure adjacent to the thin film transistor, wherein the first light detection structure includes a first bottom electrode, a top electrode, and a first photo-sensing portion disposed between the first bottom electrode and the first top electrode, one of a source electrode and a drain electrode of the thin film transistor is disposed in the same layer as the first bottom electrode of the first light detection structure; the other of the source electrode and the drain electrode of the thin film transistor is used as the first top electrode.
摘要:
An apparatus comprises a graphene film; a first arrangement of quantum dots of a first type located in contact with the graphene film as a first monolayer; a second arrangement of quantum dots of a second type located in contact with the graphene film as a second monolayer; an input voltage source connected to an end of the graphene film; and an output voltage probe connected to the graphene film between the first arrangement of quantum dots and the second arrangement of quantum dots.
摘要:
If a semiconductor device employing semiconductor light-receiving elements is disposed on a single optical axis, laser light which is incident on these light-receiving elements is interrupted by the semiconductor device, and it will be impossible to confirm as a whole that the alignment of a multiplicity of components disposed over a distance has been correctly adjusted. This problem is overcome by using a semiconductor light-receiving element with a structure which absorbs only some of a received laser light beam and which allows the greater part of the beam to be transmitted to its rear face.
摘要:
The invention is a nonlinear or bistable optical device having a low switching energy. The invention uses a means responsive to light for generating a photocurrent, a structure having a semiconductor quantum well region, and means responsive to the photocurrent for electrically controlling an optical absorption of the semiconductor quantum well region. The optical absorption of the semiconductor quantum well region varies in response to variations in the photocurrent. A photodiode or phototransistor may be used as the means responsive to light, and may be made integral with the structure having the semiconductor quantum well region. An array of devices may be fabricated on a single chip for parallel logic processing.
摘要:
A light emitting diode includes an n-type structure, a p-type structure, and an active-region sandwiched between the n-type structure and the p-type structure; a p-contact layer formed on the p-type structure; and a p-ohmic contact of a thickness in the range of 0.2-100 nm formed on the p-contact layer, wherein the p-ohmic contact comprises one or more layer of metal oxide.
摘要:
To peel an etching resist easily and reliably without damaging a transparent conductive layer coated with the etching resist. A method for manufacturing a transparent printed circuit in an embodiment of the present invention includes: providing a transparent conductive sheet 3 having a transparent base material 1 and a transparent conductive layer 2 formed on the transparent base material 1, forming an etching resist 4 having a specified pattern on the transparent conductive layer 2, etching the transparent conductive layer 2 with the etching resist 4 as a mask, forming a peeling film 5 on the etching resist 4 and on the transparent base material 1 exposed by etching of the transparent conductive layer 2 so as to cover an area where the etching resist 4 is formed, and peeling the peeling film 5 together with the etching resist 4.
摘要:
An apparatus comprises a graphene film; a first arrangement of quantum dots of a first type located in contact with the graphene film as a first monolayer; a second arrangement of quantum dots of a second type located in contact with the graphene film as a second monolayer; an input voltage source connected to an end of the graphene film; and an output voltage probe connected to the graphene film between the first arrangement of quantum dots and the second arrangement of quantum dots.
摘要:
A light-producing device integrated with a power monitoring system include a light-producing device from which light is emitted in wavelengths that can range from approximately 700 nm to approximately 3 microns. A semi-transparent sensor is located such that at least a portion of the light emitted passes through the semi-transparent sensor and at least a portion of light is absorbed by the semi-transparent sensor. The semi-transparent sensor is configured to be semi-transparent at wavelengths that can range from 700 nm to 3 microns. The semi-transparent sensor may also be used with an external light source, for example with fiber-optic cables.