Abstract:
A light emitting device disclosed in an embodiment includes: a light emitting chip including a plurality of semiconductor layers and first and second electrodes under the plurality of semiconductor layers; a first lead frame disposed under a first electrode of the light emitting chip; a second lead frame disposed under a second electrode of the light emitting chip; a protective chip disposed between the first and second lead frames and electrically connected to the first and second electrodes; and a reflective member disposed on a periphery of the light emitting chip and the first and second lead frames.
Abstract:
Disclosed is a semiconductor package and a method of manufacturing the same. The semiconductor package includes a semiconductor chip that includes metal pads provided on a predetermined area of an upper side of a semiconductor substrate, where element structures used to manufacture a semiconductor element are formed, and bump electrodes connected to the metal pads; and a passivation film that is provided on an entire surface of the semiconductor chip other than upper surface of the bump electrodes. Therefore, it is possible to avoid difficulties in performing an epoxy underfill process used in a conventional flip chip bonding, and complexity and high cost resulting from the use of a molding compound process and a solder ball process. It is also possible to prevent damages to the lateral surface of the semiconductor chip due to an absence of the passivation film on the lateral surface of the semiconductor chip in a conventional wafer level package.
Abstract:
A substrate including internal interconnections, first and second finger electrodes, and having first to fourth quadrants. External terminals are formed on the substrate and connected to the first and second finger electrodes via the internal interconnections. A first tower including first semiconductor chips is formed on the substrate. First conductive wires are formed between the first semiconductor chips and the first finger electrodes. A second tower including second semiconductor chips is formed on the substrate. Second conductive wires are formed between the second semiconductor chips and the second finger electrodes. The external terminals include a first group connected to the first finger electrodes and configuring a channel, and a second group connected to the second finger electrodes, and configuring another channel. The first finger electrodes are formed on the third quadrant, and the second finger electrodes are formed on the first quadrant.
Abstract:
A light emitting device package is disclosed. The disclosed light emitting device package includes a body comprising a cavity, and a recess formed at a bottom surface of the body, first and second lead frames mounted in the body, and a light source electrically connected with the first and second lead frames, wherein at least one of the first and second lead frames has a heat sink which is extended from a portion of the first or the second lead frames, and is disposed in the recess. The body includes a first coupler formed on at least a portion of the body. The heat sink includes a second coupler, to which the first coupler is coupled.
Abstract:
Disclosed is a semiconductor package and a method of manufacturing the same. The semiconductor package includes a semiconductor chip that includes metal pads provided on a predetermined area of an upper side of a semiconductor substrate, where element structures used to manufacture a semiconductor element are formed, and bump electrodes connected to the metal pads; and a passivation film that is provided on an entire surface of the semiconductor chip other than upper surface of the bump electrodes. Therefore, it is possible to avoid difficulties in performing an epoxy underfill process used in a conventional flip chip bonding, and complexity and high cost resulting from the use of a molding compound process and a solder ball process. It is also possible to prevent damages to the lateral surface of the semiconductor chip due to an absence of the passivation film on the lateral surface of the semiconductor chip in a conventional wafer level package.