Abstract:
A dimming lampholder includes a printed circuit board installed in the dimming lampholder, a switch and a dimming circuit installed in dimming lampholder and operated together with a dimmable energy-saving fluorescent bulb and a dimmable LED bulb. The dimmable energy-saving fluorescent bulb and the dimmable LED bulb may be installed and used directly to achieve the effect of adjusting the brightness of the emitting light.
Abstract:
A high pressure gas discharge lamp and the method of making same utilizing integrated circuit fabrication techniques. The lamp is manufactured from heat and pressure resistant planar substrates in which cavities are etched, by integrated circuit manufacturing techniques, so as to provide a cavity forming the gas discharge tube. Electrodes are deposited in the cavity. The cavity is filled with gas discharge materials such as mercury vapor, sodium vapor or metal halide. The substrates are bonded together and channels may be etched in the substrate so as to provide a means for connection to the electrodes. Electrodeless RF activated lamps may also be fabricated by this technique. Lamps fabricated from three or more planar substrates are disclosed.
Abstract:
A lamp including an elongate tube with a septum extending longitudinally therethrough to near the distal end of the tube. A pair of assembled leads and electrodes are positioned in the tube through the terminal end and the tube sealed. With an end cap on the distal end of the tube, an elongate cavity is formed extending along either side of the septum and joined at the distal end. A bend is made in the tube such that the ends of the electrodes extend into areas within the elongate cavity between the bend and the distal end of the tube.
Abstract:
The invention relates to a measuring circuit for detecting the amount of deposited electrode material on the wall of a lamp vessel of a discharge lamp by measuring the power of infrared radiation within a specific wavelength range, comprising a detector for generating an electrical signal constituting a measure for the power of the infrared light in said specific wave length range. According to the invention the measuring is done in a time lapse starting after a predetermined time interval following the extinguishing of the discharge lamp. An increased accuracy of the measurement is thereby realized.
Abstract:
A high pressure gas discharge lamp and the method of making same utilizing integrated circuit fabrication techniques. The lamp is manufactured from heat and pressure resistant planar substrates in which cavities are etched, by integrated circuit manufacturing techniques, so as to provide a cavity forming the gas discharge tube. Electrodes are deposited in the cavity. The cavity is filled with gas discharge materials such as mercury vapor, sodium vapor or metal halide. The substrates are bonded together and channels may be etched in the substrate so as to provide a means for connection to the electrodes. Electrodeless RF activated lamps may also be fabricated by this technique. Micro-lasers may also be fabricated by this technique as well.
Abstract:
The high-power radiator includes a discharge space (12) bounded by a metal electrode (8), cooled on one side, and a dielectric (9) and filled with a noble gas or gas mixture, both the dielectric (9) and also the other electrode situated on the surface of the dielectric facing away from the discharge space (12) being transparent for the radiation generated by quiet electric discharges. In this manner, a large-area UV radiator with high efficiency is created which can be operated at high electrical power densities of up to 50 kW/m.sup.2 of active electrode surface.
Abstract translation:大功率散热器包括由一侧冷却的金属电极(8)界定的放电空间(12)和填充有惰性气体或气体混合物的电介质(9),电介质(9)和 位于电介质背离放电空间(12)的表面上的另一个电极对于由静电放电产生的辐射是透明的。 以这种方式,产生了高效率的大面积UV辐射器,其可以在高达50kW / m 2的有效电极表面的高功率密度下操作。
Abstract:
A gas discharge vuv light source is disclosed having low inductance and a high intensity output covering a range from 90 A to 6000 A. The source comprises a capillary defining a first bore removably, and at least partially, mounted within an air-cooled ceramic insulator; a first, hollow, cylindrical electrode having a removable insert defining a second bore disposed in end-to-end, coaxial relationship with one end of the capillary, and a second, hollow electrode which is configured to define a cavity and so as both to support the insulator such that the first and second bores are coaxially aligned with the cavity, and to releasably support either a tubular insert or a finned plate insert; and metallic vacuum seals connecting the electrodes to the insulator such that a gas-tight seal is formed between each electrode and the insulator at locations isolated from the first and second bores and from the cavity.
Abstract:
A device for producing ultraviolet radiation of high spectral radiation intensity is disclosed in which the radiation is generated in a mercury-argon-filled discharge tube with a thermoemissive cathode by a wall-stabilized d.c. gas discharge at a mercury pressure p.sub.Hg between 5 .times. 10.sup.-.sup.3 and 5 .times. 10.sup.-.sup.1 torr, an argon pressure p.sub.Ar between 0.01 and 10 torr and a current density j.sub.o of the discharge current I between 1 and 25 A/cm.sup.2, and in which the two electrode spaces are connected to one another through a pressure-equalization region as well as through the discharge region wherein the two electrodes are arranged in tandem in a common envelope, the two arms of the discharge region are joined to the end of the envelope nearest the discharge region so that one arm projects coaxially into the envelope and passes through the toroidal electrode nearest the discharge region, and the inner wall of the envelope and the arm projecting into the envelope are each provided with a collar between the two electrodes, the collars being so arranged with respect to one another as to form a connecting passage acting as a pressure-equalizing region running between the cathode and anode spaces with a first portion running in the cathode/anode direction and a second portion running in the anode/cathode direction.
Abstract:
The fluorescent light bulb of the present invention is adapted to be used in the socket of a conventional incandescent bulb fixture and includes a centrally located ballast electrically connected to a socket plug which is adapted to be received in the socket of the fixture. A fluorescent tube or envelope substantially completely surrounds and encloses the central ballast. The fluorescent tube has electrical contacts formed therein which are in electrical connection to the ballast in order to form a compact fluorescent light bulb assembly.
Abstract:
A hollow cathode lamp for generating an intense small light spot representative of the gas fill within the envelope and means associated with a baffle member provided between the hollow cathode and the anode of the lamp to permit low starting voltages.