Abstract:
A security element is applied to a document or an object in the form of a directly printed marking or in the form of a tag made of paper or another material, with or without an identifier. A user can take a picture of the marking or tag with a smartphone and then send the picture to a device including software provided with a recognition algorithm including neural networks. The device visualizes the fingerprint of the tag or marking, thus making it possible to ascertain the authenticity of the document or object. In order to establish the authenticity of the product protected by the device, the image, stored in a cloud or blockchain database, of the tag obtained after printing same or of the marking is compared with a new description.
Abstract:
Embodiment for detecting duplicate images include systems for determining that two or more of the images have similar key attributes such as attributes related to certain data in the images or image quality. Further, the embodiments include superimposing at least a portion of a first image of the two or more images over at least a portion of the second image of the two or more images, comparing the first image and second image; and determining whether the first image and the second image are identical.
Abstract:
A security device comprises a transparent, coloured element in a first region of the device and in a surface of which a first optically variable effect generating relief structure is formed. A reflection enhancing layer extends over the first optically variable effect generating relief microstructure and follows the contour of the relief, the reflection enhancing layer also being provided in a second region of the device laterally offset from the first region.
Abstract:
A moiré magnification device includes a transparent substrate, the transparent substrate carrying a regular array of micro-focusing elements on a first surface, where the focusing elements define a focal plane, and a corresponding array of microimage element unit cells located in a plane substantially coincident with the focal plane of the focusing elements, where each unit cell includes at least two microimage components. The pitches of the micro-focusing elements and the array of microimage element unit cells and their relative locations are such that the array of micro-focusing elements cooperates with the array of microimage element unit cells to generate magnified versions of the microimage components due to the moiré effect.
Abstract:
A reflective decoding device is provided for use in decoding an encoded image comprising a latent image encoded using at least one encoding parameter. The device comprises a substrate with a reflective surface portion having a surface topography comprising a predetermined pattern of topographical features. The predetermined pattern is configured with at least one geometric characteristic corresponding to the at least one encoding parameter so that placement of a light-transmissive sheet having the encoded image formed thereon over the predetermined pattern of topographical features allows the latent image to be viewed.
Abstract:
An apparatus and method for verifying value documents involves a substrate having at least one light-transmissive region with a first information item. A separate display comprises a gridded arrangement of pixels and a second information item is displayed through the separate display at least regionally to correlate with the first information item. A further information item not recognizable and/or readable to a viewer without auxiliary means is hidden in the first and/or second information item. The substrate is placed with its first information item over the second information item which is displayed on the separate display, and the hidden information item becomes recognizable and/or readable. The first information item is formed by light-transmissive diffractive structures whose surface is furnished with an at least partly reflective coating formed from elements arranged in a gridded manner.
Abstract:
The present invention provides a product comprising a patterned optically anisotropic layer having two or more regions of different birefringence, which has a latent image becoming visible through a polarizing plate, wherein an image visible through the polarizing plate including the latent image comprises a periodic structure. An additional visual effect can be attached to the latent image observed through a polarizing plate.
Abstract:
A method of authenticating and/or identifying a security article including a first image includes superimposing at least partially the first image of the article with a second image. The second image may be produced by an electronic imager. The method further includes performing a relative movement between the first and second images so as to make it possible to observe an item of information relating to authentication and/or identification of the security article during the relative movement between the first and second images.
Abstract:
A security device includes a transparent, coloured element in a first region of the device and in a surface of which a first optically variable effect generating relief structure is formed. A reflection enhancing layer extends over the first optically variable effect generating relief microstructure and follows the contour of the relief, the reflection enhancing layer also being provided in a second region of the device laterally offset from the first region.
Abstract:
A reflective decoding device is provided for use in decoding an encoded image comprising a latent image encoded using at least one encoding parameter. The device comprises a substrate with a reflective surface portion having a surface topography comprising a predetermined pattern of topographical features. The predetermined pattern is configured with at least one geometric characteristic corresponding to the at least one encoding parameter so that placement of a light-transmissive sheet having the encoded image formed thereon over the predetermined pattern of topographical features allows the latent image to be viewed.