Abstract:
An automated method of producing encoded images for incorporation into a digital document is provided. The method comprises receiving a request from a user to produce an encoded image. The request includes user-supplied data for producing the encoded image, the user-supplied data including user-supplied authentication indicia and/or at least one user-supplied encoding parameter. The method further comprises determining whether the user is authorized to produce an encoded image using the user-supplied data. Responsive to a determination that the user is authorized to produce an encoded image using the user-supplied data, encoding actions are carried out. The encoding actions include establishing at least one digitized authentication image and establishing an encoding parameter set including any user-supplied encoding parameters. The encoding parameter set is usable to encode one or more of the at least one digitized authentication image. The encoding actions also include encoding one or more of the at least one digitized authentication image using the encoding parameter set to produce a final encoded image.
Abstract:
A method of authenticating an object using optically decodable encoded images is presented. The method comprises attaching a digital data storage medium to the object and storing an optically decodable digital encoded image in the data storage medium. The digital encoded image comprises authentication information determinable by decoding the digital encoded image. The method further comprises downloading the digital encoded image from the digital data storage medium and applying a digital decoding algorithm to the captured digital image to establish a decoding result. The decoding result is then compared to object authentication criteria to establish an authentication result.
Abstract:
The present invention provides a durable and self-verifying secure document system and a method for its production, wherein counterfeiting is prevented. The secure document system is potentially useful for a wide variety of documents including, but not limited to, lottery tickets, currency, traveler's checks, passports, stock and bond certificates, bank notes, driver's licenses, wills, coupons, rebates, contracts, food stamps, magnetic stripes, test answer forms, invoices, tickets, inventory forms, tags, labels and original artwork. The instant invention provides a plastic paper substitute having various indicia associated therewith including visible and hidden indicia. Application of the hidden indicia to the plastic paper substitute is implemented in accordance with a computer software program, and the document includes an integral lens area which is particularly designed to verify the document's authenticity by rendering the hidden indicia visible to the viewer. The instant invention is particularly durable when produced on one of the modern plastic paper substitutes.
Abstract:
A self-authenticating article comprising a substrate having an image receiving surface and a lenticular lens is provided. The lenticular lens has a predetermined lens frequency and is configured for optically decoding encoded indicia viewed therethrough. The lens is attached to the substrate so that the lens can be selectively positioned to overlie the image receiving surface to decode encoded indicia printed thereon. The self-authenticating article further comprises an encoded image on the image receiving surface, the encoded image comprising at least one of the set consisting of printed indicia and indicia formed as variations in surface geometry of the image receiving surface. The surface geometry variations may comprise raised and non-raised areas surface areas that combine to define at least a portion of the indicia.
Abstract:
A method is provided for determining whether an object is an authentic object to which an expected encoded image has been applied. The expected encoded image having been constructed by encoding an authentication image using a set of one or more encoding parameters. The method comprises receiving a digital image of at least a portion of the test object including a target area where the expected encoded image would be applied if the test object is an authentic object. The method further comprises determining the one or more encoding parameters and applying a digital decoding algorithm to the captured digital image to establish a decoding result. The decoding result may then be compared to object authentication criteria to establish an authentication result. In particular embodiments of the invention, the actions of receiving, determining, applying and comparing are carried out by an authentication server and the digital image is received from an inspection processor over a network.
Abstract:
A reflective decoding device is provided for use in decoding an encoded image comprising a latent image encoded using at least one encoding parameter. The device comprises a substrate with a reflective surface portion having a surface topography comprising a predetermined pattern of topographical features. The predetermined pattern is configured with at least one geometric characteristic corresponding to the at least one encoding parameter so that placement of a light-transmissive sheet having the encoded image formed thereon over the predetermined pattern of topographical features allows the latent image to be viewed.
Abstract:
An authentication method comprises providing at least one object having a print region with printed material contained thereon, the print layer comprising a layer of non-visible indicia. At least a portion of the non-visible indicia is formed from an emitting substance that emits at least one wavelength of light outside a visible range of an electromagnetic spectrum when stimulated with electromagnetic radiation. The non-visible indicia comprises optically encoded indicia. The method further comprises creating an optical image of the layer of non-visible indicia with an imaging device such that the layer of non-visible indicia can be perceived by a human eye viewing the optical image. The method still further comprises decoding the optically encoded authentication indicia and comparing the decoded authentication indicia to expected authentication indicia to verify the authenticity of the object.
Abstract:
A method of applying an authentication image to an article is presented. The method comprises obtaining a digitized version of the authentication image, encoding the digitized version of the authentication image to produce an encoded latent image, and printing the encoded latent image on a printable surface of the article containing a primary image using a transmittent printing medium.
Abstract:
A method is provided for constructing a composite image having an authentication image formed therein. The authentication image is viewable using a decoder lens having one or more decoder lens frequencies. The method comprises generating a first plurality of component images in which corresponding tonal areas are tonally balanced around at least one tonal value. At least one of the component images is configured to include a representation of the authentication image. The method further comprises determining a pattern of component image elements for each of the component images. The pattern having at least one element frequency that is equal to or a multiple of a decoder lens frequency. At least a portion of the content of each component image element is extracted and used to construct a composite image element.
Abstract:
A method is provided for determining whether a test object is an authentic object having an authentication image applied to an authentication image area thereof. The method comprises positioning and orienting a portable image acquisition device for selectively viewing and capturing a magnified image of a target surface area of the test object. The target surface area corresponds to the authentication image area of an authentic object. The method further comprises capturing a magnified digital image of the target surface area using the image capture acquisition device. The captured digital image is then processed to obtain a processed digital image and an authentication result is determined based on whether the processed digital image meets predetermined authentication criteria.