Abstract:
The present disclosure relates to various vehicle braking assemblies. Brake pedal arms include, for example, a cam block that is configured to simplify the engagement between the power booster and pedal arm. Cam block can be movable with respect to the pedal arm to manage the gap between the pedal arm and power booster in by-wire braking assemblies.
Abstract:
When the mass of the first moving body is defined as M1, the mass of the second moving body is defined as M2, the distance between a first intersection point of a perpendicular line from a rotation center of the rotation axis to the first moving body and a first gravity center of the first moving body when the distance between the first intersection point and the first gravity center in the first moving body is the shortest is defined as L1, and the distance between a second intersection point of a perpendicular line from the rotation center of the rotation axis to the second moving body and a second gravity center of the second moving body when the distance between the second intersection point and the second gravity center in the second moving body is the shortest is defined as L2, M2=(L1/L2)×M1 is satisfied.
Abstract:
In another particular embodiment, a parking brake assembly is provided and includes a parking brake lever, a first locking member that is connectable to the parking brake cable, a second locking member and a spring. The parking brake lever is operatively connected to the second locking member for movement between a locking position wherein the second locking member engages the first locking member and locks the first locking member for movement with the parking brake lever in a first direction, and an unlocking position wherein the second locking member unlocks the first locking member from the parking brake lever during movement of the parking brake lever in the first direction. The spring is positioned to apply a tensioning force to the parking brake cable and is positioned to bias the second locking member towards the locking position.
Abstract:
The disclosure relates to an actuating drive having a position transmitter for control of an actuating element with a position in a process installation. The position transmitter is equipped with a rotary measurement system whose pivoting range is mechanically limited, with the rotary measurement system having a shaft which is connected to a pick-up lever in an interlocking and unconfusable manner, which pick-up lever is articulated by means of the actuating drive or the actuating element. The shaft and the rotary measurement system are connected to one another via a slipping clutch. Markings are arranged isoazimuthally with respect to the rotation axis of the shaft, on the shaft circumference, and include angle information about the angle of the marking position with respect to the pick-up lever. The digital position transmitter has a sensor system for identification and evaluation of the markings. The slipping clutch has hysteresis.
Abstract:
The present disclosure relates to various vehicle braking assemblies. Brake pedal arms include, for example, a cam block that is configured to simplify the engagement between the power booster and pedal arm. Cam block can be movable with respect to the pedal arm to manage the gap between the pedal arm and power booster in by-wire braking assemblies.
Abstract:
The present disclosure relates to various vehicle braking assemblies. Brake pedal arms include, for example, a cam block that is configured to simplify the engagement between the power booster and pedal arm. Cam block can be movable with respect to the pedal arm to manage the gap between the pedal arm and power booster in by-wire braking assemblies.
Abstract:
A clutch actuation system for a vehicle, comprises a first assembly adapted to be driven from a stop position by an actuating force, and a second assembly, which is driven by the first assembly, and drives in a certain direction a driven member which moves in such a way that a first part of its travel is accomplished against a relatively weak resisting force, and a following part of its travel is accomplished against a relatively strong restoring force. A clearance adjuster comprises means for biasing the first and second assemblies with respect to one another in such a direction as, if the first assembly remains in its stop position, to drive the driven member in said certain direction with biasing force strong enough to overcome said relatively weak resisting force but not strong enough to overcome said relatively strong restoring force, and means for locking the position of said first assembly with respect to said second assembly when said first assembly is moved off its stop position.
Abstract:
Embodiments include a self-centering control rod device having two independently operating springs, a bushing, and a control rod. The two springs utilize preload compression to maintain the control rod centered. One spring operates directly against the control rod while the other operates against the bushing. Each spring may have different spring strength or established preload in order to balance out the application force required to control a particular object. Spring compression force adjustments on one spring do not affect the center point or the spring compression force adjustment of the other spring.
Abstract:
Embodiments include a self-centering control rod device having two independently operating springs, a bushing, and a control rod. The two springs utilize preload compression to maintain the control rod centered. One spring operates directly against the control rod while the other operates against the bushing. Each spring may have different spring strength or established preload in order to balance out the application force required to control a particular object. Spring compression force adjustments on one spring do not affect the center point or the spring compression force adjustment of the other spring.