摘要:
The present invention relates to safety in a dynamic 3D healthcare environment. The invention in particular relates to a medical safety-system for dynamic 3D healthcare environments, a medical examination system with motorized equipment, an image acquisition arrangement, and a method for providing safe movements in dynamic 3D healthcare environments. In order to provide improved safety in dynamic 3D healthcare environments with a facilitated adaptability, a medical safety-system (10) for dynamic 3D healthcare environments is provided, comprising a detection system (12), a processing unit (14), and an interface unit (16). The detection system comprises at least one sensor arrangement (18) adapted to provide depth information of at least a part of an observed scene (22). The processing unit comprises a correlation unit (24) adapted to correlate the depth information. The processing unit comprises a generation unit (26) adapted to generate a 3D free space model (32). The interface unit is adapted to provide the 3D free space model.
摘要:
A control system may receive a first plurality of measurements indicative of respective joint angles corresponding to a plurality of sensors connected to a robot. The robot may include a body and a plurality of jointed limbs connected to the body associated with respective properties. The control system may also receive a body orientation measurement indicative of an orientation of the body of the robot. The control system may further determine a relationship between the first plurality of measurements and the body orientation measurement based on the properties associated with the jointed limbs of the robot. Additionally, the control system may estimate an aggregate orientation of the robot based on the first plurality of measurements, the body orientation measurement, and the determined relationship. Further, the control system may provide instructions to control at least one jointed limb of the robot based on the estimated aggregate orientation of the robot.
摘要:
An intelligent motion control system for devices moving in a locality includes a number of intelligent motion bodies and a server. The server includes a storage module, a task assigning module, a path planning module, and a communication module. The storage module stores a map and a path planning rule. The task assigning module assigns a motion task to each intelligent motion body. The path planning module plans a moving path for each intelligent motion body according to the map, the motion task, and the path planning rule. The communication module transmits the moving path to the intelligent motion body. The intelligent motion body moves according to the moving path and can provide feedback to the server as to any obstacles in the moving path. An intelligent motion control method is also disclosed.
摘要:
A collision avoidance method according to the present invention avoids collision of a robot arm 120 including an upper arm part 122 and a forearm part 124 connected to each other via an elbow part 134 with an obstacle. Movable areas of the upper arm part 122 and the forearm part 124 in a state in which positions of both ends of the robot arm 120 have been fixed are calculated. Intersections of the movable areas with a first line on a boundary surface of an obstacle area including the obstacle are calculated. A collision avoidance range in which the robot arm 120 does not collide against the obstacle area in the movable areas is determined based on the intersections that have been calculated.
摘要:
A manual feed apparatus of a robot comprises an interference calculation apparatus configured to calculate an operable range in which the robot can operate without causing interference. The interference calculation apparatus includes an operation range setting part configured to judge a position at which the robot can operate without interfering with a peripheral object and set the operable range. The operation range setting part calculates the operable range during a period when the robot is stopped. The interference calculation apparatus calculates an operation allowable range in a direction in which the robot operates based on the operable range. The robot control apparatus executes control for reducing a speed of the robot when the operation allowable range is smaller than a predetermined judgement value.
摘要:
An object detection device can acquire information of an object in the vicinity of a host-vehicle for appropriate traveling assistance. An object detection device 1 includes a vehicle state detection section 2, an environmental situation acquisition section 3, a road information acquisition section 4, a detection control section 6, and a detection section 7. A host-vehicle state prediction section 61 acquires a target state of a host-vehicle 81. The detection section 7 detects an object. A parameter setting section 63 switches the detection characteristic of the object in the detection section 7 in accordance with the target state.
摘要:
Technologies are generally described for sensor-based safety features for robotic equipment, and the implementation thereof. One or more sensors may be positioned relative to the robotic equipment such that the sensors may capture light from at least a portion of an environment surrounding the robotic equipment. In some examples, the sensors may be integrated with the robotic equipment and/or may be configured to rotate. An analysis module coupled to the sensors may build a model image of the environment based on the light captured by the sensors. The analysis module may detect that an unintended object is approaching the robotic equipment in response to detecting a change in the model image, and based on a proximity and/or a speed of approach of the object to the robotic equipment, the analysis module may instruct the robotic equipment to reduce an operating speed and/or stop motion of the robotic equipment.
摘要:
Provided is a control device for a link mechanism capable of preventing a damage of joint mechanisms even in the case of a collision of a movable part against an external object. The control device 30 includes: a characteristic determination unit 34 which determines desired stiffness k_cmd_i of an elastic element 5 of each joint mechanism Ji so as to be within a range of first stiffness k1_i wherein the joint maximum elastic energy is equal to or more than joint collision kinetic energy to second stiffness k2_i wherein a first time is equal to or longer than a second time; and a characteristic control unit 35 which controls stiffness k_i of the elastic element 5 of each joint mechanism Ji to be the desired stiffness k_cmd_i.
摘要:
A numerically controlled machine tool for machining a workpiece is provided. The machine tool includes a work spindle, at least one feed axis, and a device for collision monitoring on said machine tool, wherein the device for collision monitoring includes a collision sensor mounted on a machine part of the machine tool, collision detection means for detecting a collision of machine parts of the machine tool when a measuring value detected by the collision sensor exceeds a collision limit value, and signal output means for outputting a stop signal for stopping the at least one work spindle and the at least one feed axis, of the machine tool when the collision detection means detects a collision. The machine tool includes a unit for determining the collision limit value on the machine tool.
摘要:
An intelligent mobile robot having a robot base controller and an onboard navigation system that, in response to receiving a job assignment specifying a job location that is associated with one or more job operations, activates the onboard navigation system to automatically determine a path the mobile robot should use to drive to the job location, automatically determines that using an initially-selected path could cause the mobile robot to run into stationary or non-stationary obstacles, such as people or other mobile robots, in the physical environment, automatically determines a new path to avoid the stationary and non-stationary obstacles, and automatically drives the mobile robot to the job location using the new path, thereby avoiding contact or collisions with those obstacles. After the mobile robot arrives at the job location, it automatically performs said one or more job operations associated with that job location.