Abstract:
The disclosure provides an electronic cigarette controllable by mobile software and a controlling method thereof. The electronic cigarette comprises a vaporizer having a heating resistor for heating and vaporizing electronic cigarette liquid and comprises a battery assembly having a battery and a control circuit board, wherein the control circuit board is arranged with a microcontroller, a Bluetooth data transmission unit and an unlock switch unit, wherein the Bluetooth data transmission unit is configured with a mobile software controlling terminal which is the APP installed on a smart phone, the APP contains encryption information which can be sent through mobile Bluetooth to the Bluetooth data transmission unit and then to the microcontroller, and the unlock switch unit is configured to perform unlock and power on operation when the encryption information is identified by the microcontroller.
Abstract:
A method for connecting a field device (1) to an operating unit (2), and a field device (1) for use therewith, via which a connection between a field device and an operating unit can be implemented when the field device is mounted at a location that is difficult to access is achieved in that a query signal is transmitted to the field device (1) by the operating unit (2) and that a response signal is generated by the field device (1) as a reaction to the query signal, in that the field device (1) generates a blinking display and/or a change in color of the display and/or an acoustic signal and/or a change in an acoustic signal.
Abstract:
The apparatus disclosed is a wireless vibration sensor monitor and recorder along with the associated system and method of use. The apparatus contains a digital accelerometer that operates off six axes. The apparatus may also include features such as a temperature sensor and ambient light sensor. The system actively monitors time and battery voltage level, as well as records information pertinent to the health of the apparatus. Once affixed to an appliance or piece of machinery, the apparatus monitors the duration of the cycle and the vibrations produced to compile a cycle profile. Once the apparatus has determined the cycle or predetermined period to be complete, a notification is sent to a remote user. This signal may be received by any compatible Bluetooth low energy device.
Abstract:
There is described a method for enabling the operation of automation components of a technical system via a mobile control and monitoring device. In a first step, the control and monitoring device receives a first identification from a first transponder device, with the first transponder device being attached to the technical system, with the first transponder device having been activated by the automation components and with the first identification having been transmitted via a wireless communication connection from the automation components to the mobile control and monitoring device. In a further step the communication connection between the control and monitoring device and the automation components is deactivated. The mobile control and monitoring device sends a carrier signal and following that receives the carrier signal modulated by the first transponder device. A first distance between the control and monitoring device and the first transponder device is then determined from the modulated carrier signal. In addition, a first radio-determined identification from the first transponder device is determined from the modulated carrier signal. Following the reception of the modulated carrier signal, the communication connection is reactivated. If the first distance is shorter than a predetermined first distance and if the radio-determined first identification corresponds to the first identification, the operation of the automation components is enabled.
Abstract:
There is described a method for enabling the operation of automation components of a technical system via a mobile control and monitoring device. In a first step, the control and monitoring device receives a first identification from a first transponder device, with the first transponder device being attached to the technical system, with the first transponder device having been activated by the automation components and with the first identification having been transmitted via a wireless communication connection from the automation components to the mobile control and monitoring device. In a further step the communication connection between the control and monitoring device and the automation components is deactivated. The mobile control and monitoring device sends a carrier signal and following that receives the carrier signal modulated by the first transponder device. A first distance between the control and monitoring device and the first transponder device is then determined from the modulated carrier signal. In addition, a first radio-determined identification from the first transponder device is determined from the modulated carrier signal. Following the reception of the modulated carrier signal, the communication connection is reactivated. If the first distance is shorter than a predetermined first distance and if the radio-determined first identification corresponds to the first identification, the operation of the automation components is enabled.
Abstract:
A sensor system includes: one or more master sensors; a plurality of slave sensors; and one or more servers. The one or more master sensors wirelessly send data to the plurality of slave sensors. The plurality of slave sensors acquire environmental and/or industrial process data based on associated configurations of the plurality of slave sensors. The plurality of slave sensors wirelessly send the environmental and/or industrial process data to the one or more master sensors. The one or more master sensors send the environmental and/or industrial process data to at least one of the one or more servers over a wireless network.
Abstract:
A package scanning conveyance system that integrates a first two-dimensional image with at least a second two-dimensional image or a three-dimensional point clouds to calculate or estimate a package's physical properties, and/or determine if there are two or more packages in a pile. The captured imaging data is transformed by the inventive system to provide real-time feedback to a human operator to enable the operator to maintain an understanding of the system's performance. The imaging data may also be used to perform quality-checks on other parts of the package delivery and conveyance systems and document the condition of packages that have passed through the system.
Abstract:
The apparatus disclosed is a wireless vibration sensor monitor and recorder along with the associated system and method of use. The apparatus contains a digital accelerometer that operates off six axes. The apparatus may also include features such as a temperature sensor and ambient light sensor. The system actively monitors time and battery voltage level, as well as records information pertinent to the health of the apparatus. Once affixed to an appliance or piece of machinery, the apparatus monitors the duration of the cycle and the vibrations produced to compile a cycle profile. Once the apparatus has determined the cycle or predetermined period to be complete, a notification is sent to a remote user. This signal may be received by any compatible Bluetooth low energy device.
Abstract:
Low cost, low power consumption radio frequency transceivers are incorporated in barrier operator control systems for transmitting signals between an operator control unit, one or more remote control units, a diagnostic or calibration device and an obstruction detector. Similar detector devices, including such transceivers, may be employed in loading docks for detecting the status of dock levelers and vehicle restraint devices. Radio frequency communication eliminates the need for hard wiring and also provides for transmission of commands and status information between various control units.
Abstract:
The invention describes a system for monitoring industrial processes, comprising sensor means for detecting one or more process quantities in at least one process station, acquisition means for acquiring measuring signals emitted by said sensor means, processing means operating on signals generated by said acquisition means for obtaining process information, and means for managing the manufacturing flow operating on the basis of said information on process quality. According to the invention, said acquisition means are arranged locally in said at least one process station and comprise means for coding said measuring signals generated by said sensor means into coded signals, said means for managing the manufacturing flow are arranged in remote position with respect to acquisition means and there are wireless transceiver means associated to said acquisition means for sending coded signals generated by said acquisition means to said means for managing the manufacturing flow.