Laboratory instrument and insertable network instrument

    公开(公告)号:US12117458B2

    公开(公告)日:2024-10-15

    申请号:US16614324

    申请日:2018-05-15

    申请人: Eppendorf SE

    IPC分类号: G01N35/00 B01L1/00

    摘要: The invention relates to a laboratory instrument comprising a network interface apparatus (6), which is configured to provide, in the inserted position of the insertable instrument, a data connection between at least two network instruments of a laboratory instrument network (100), which network instruments are taken from the group of network instruments including at least a first control apparatus (4) of the laboratory instrument and the at least one insertable instrument (20; 30). The invention further relates to a laboratory instrument network including the laboratory instrument and a method for working on laboratory samples using the laboratory instrument network.

    Overshot and undershot control gate

    公开(公告)号:US12084826B2

    公开(公告)日:2024-09-10

    申请号:US17769191

    申请日:2020-10-15

    摘要: A control gate for a channel or pond adapted to be installed across a channel for liquids. The control gate includes: at least two panels hingedly connected together, the panels having opposing sides in sealing engagement with side walls of the channel, a lowermost panel being in sealing engagement with the floor of the channel. The panels are substantially vertically aligned in a fully closed position of the control gate. At least one first lifting element is connected to the top of an uppermost panel and is adapted to lower and raise the uppermost panel relative to its hinged connection in a concertina manner to provide an overshot position for the control gate. At least one second lifting element is connected to the bottom of the lowermost panel to raise and lower the lowermost panel from the floor of the channel to provide an undershot position for the control gate.

    Reaction vessel for automatic analyzer

    公开(公告)号:US11965820B2

    公开(公告)日:2024-04-23

    申请号:US17275291

    申请日:2019-06-20

    摘要: A reaction vessel capable of measuring a light amount from a reaction liquid without degrading a function of maintaining the reaction vessel at a predetermined temperature is provided. A reaction vessel including a cylindrical shape centered on a first axis, in which an overall length in a first axis direction is longer than an overall length in a second axis direction and an overall length in a third axis direction, the second axis being perpendicular to the first axis and the third axis being perpendicular to the first axis and the second axis. The reaction vessel includes: an opening part which dispenses a liquid at a portion on one end side in the first axis direction; a first flat surface and a second flat surface which is substantially parallel to the first flat surface.

    Analysis method of automatic analyzer

    公开(公告)号:US11860177B2

    公开(公告)日:2024-01-02

    申请号:US16921997

    申请日:2020-07-07

    摘要: An analysis method of an automatic analyzer is provided. The automatic analyzer includes: an insertion unit into which a rack is inserted; a transport line that transports the rack; a detection unit that detects a rack identifier from a rack or an attribute from a sample container which accommodates therein a sample as an object to be examined and which is mounted on a rack; an analysis module that includes a light source and a spectrometer which measures a measurement value to analyze a sample; a rack standby unit in which a rack stands by; and, a rack recovery unit that recovers a rack. In the automatic analyzer, a rack stands by in the rack standby unit until a measurement result in the analysis module is output; and is then recovered to the rack recovery unit. The analysis method includes: a step of transporting a rack from the rack insertion unit to the transport line, making the transported rack stand by until a measurement result in the analysis module is output, and then recovering the rack to the rack recovery; a step of detecting an identifier from the rack or an attribute from a sample container accommodating a sample and mounted on the rack; and a step of, when a rack transported subsequent to the rack of interest is transported from the rack insertion unit to the transport line, recovering the subsequent rack to the rack recovery unit without standing by in the rack standby unit.