Abstract:
A multimode ultrasonic probe tip and transducer integrated into a micro tool, such as a nano indenter or a nano indenter interfaced with a Scanning Probe Microscope (SPM) is described. The tip component may be utilized to determine mechanical properties or characteristics of a sample, including for example, complex elastic modulus, hardness, friction coefficient, and strain and stress at nanometer scales and high frequencies. The tip component is configured to operate at multi-resonant frequencies providing sub-nanometer vertical resolution. The tip component may be quasi-statistically calibrated and contact mechanics constitutive equations may be utilized to derive mechanical properties of a sample. Contact mechanical impedance and acoustic impedance may also be compared.
Abstract:
The present invention provides a polymer indentation method and tester that includes measuring the time taken by a polymeric material to recover a set portion of an initial deformation and use this duration as a material degradation indicator. The recovery time was found to be more sensitive to cable degradation than the specific compressive stillness (or indenter modulus) measured during the indentation phase, and this high sensitivity was achieved for both thermally aged and irradiated polymer.
Abstract:
In the measurement method, a vibrator (5) of a detection unit (4) is relatively moved against a plate (3) of which surface is flat having predetermined area. The vibrator (5) which is vibrating is moved closer to a surface of an object-to-be-measured (1) which is mounted on the plate (3) until the frequency thereof is varied. A position where the frequency of the vibrator (5) is varied is output as a contact position where the vibrator (5) is contacted to the object-to-be-measured (1). Then, thickness of the object-to-be-measured (1) is measured by comparing the position where the vibrator (5) is contacted to the object-to-be-measured (1) with a surface position of the plate (3).
Abstract:
This invention relates to a device and method for optical nanoindentation measurement, according to which respective measurement results are obtained by having an indenter tip apply load to a fixed portion of a thin film, having an indenter tip apply load to a non-fixed portion of a thin film, and having a vibrating component transmit the dynamic properties of the vibration to the thin film. By combining the above measurement results in calculations, the Young's modulus, the Poisson's ratio, and the density of the thin film can be obtained.
Abstract:
To determine the transplant compatibility of an in vitro cultured tissue, a method measures the stiffness of the cultured tissue by using a stiffness measuring device, which stiffness measuring device includes a detecting unit and calculation means, the detecting unit includes a contact unit, a vibrator connected to the contact unit, and a vibration detecting unit for detecting the vibration of the vibrator, and the calculation means determines stiffness information by calculation based on the detected result from the vibration detecting element; and by bringing the contact unit into contact with the cultured tissue. With this method the transplant compatibility of the cultured tissue can be nondestructively and easily determined easily and the quality of the cultured tissue can be appropriately controlled.
Abstract:
A hardness measuring apparatus in which a frequency deviation detecting circuit is used has a contact element, an oscillator, a self-oscillating circuit and a gain variation compensating circuit. The self-oscillating circuit feeds back oscillation information of the oscillator to generate a resonant state. The gain variation compensating circuit is disposed in the self-oscillating circuit. The gain variation compensating circuit has a central frequency different from that of the self-oscillating circuit, and increases gain in response to a change in frequency.
Abstract:
A material testing machine, including a machine body, a first fixing element, a second fixing element and a detection assembly; the first and the second fixing elements are mounted to the machine body, the first fixing element is configured to mount a first testing element, and the second fixing element is configured to mount a second testing element; in a first state, the first and the second testing elements are in sliding contact; in a second state, the first fixing element drives the first testing element to collide with the second testing element; the detection assembly is configured to detect a target parameter, and in the first state, the target parameter includes a friction force and/or, a friction sound between the first and the second testing elements; and in the second state, the target parameter includes a collision force received by the first or the second testing element.
Abstract:
A system and a method for validating damping material dynamic property are provided. In the method, a measured platform is established by a viscoelastic material firstly, and then obtains a measured frequency response data. Following up, establish a viscoelastic model for a viscoelastic material, and than derived the viscoelastic function based viscoelastic model. Then, the viscoelastic function is substitute into a dynamic load equation; further obtains a simulation storage modulus and a simulation loss modulus. Then, obtain a simulation frequency response data by the simulation elastic modulus and the simulation viscosity coefficient. Next, obtain the integrated frequency response data according to the reference temperature with an algorithm. Finally, calculating out an elastic modulus value and the viscosity coefficient value by the integrated frequency response data.
Abstract:
In a vibration information detection step, a probe is inserted into a food sample, and any one of the displacement, the velocity or the acceleration of a vibration occurring on the probe by the insertion is detected as vibration information (step S1). In a frequency band dividing step, the vibration information is divided by a band pass filter into individual pieces of vibration information in each of a plurality of frequency bands (step S2). In a food texture index calculation step, a food texture index value based on vibrational energy per unit time in each of the frequency bands is calculated using a computer from the vibration information in each of the frequency bands and the center frequency of the corresponding frequency band (step S3).
Abstract:
In the measurement method, a vibrator (5) of a detection unit (4) is relatively moved against a plate (3) of which surface is flat having predetermined area. The vibrator (5) which is vibrating is moved closer to a surface of an object-to-be-measured (1) which is mounted on the plate (3) until the frequency thereof is varied. A position where the frequency of the vibrator (5) is varied is output as a contact position where the vibrator (5) is contacted to the object-to-be-measured (1). Then, thickness of the object-to-be-measured (1) is measured by comparing the position where the vibrator (5) is contacted to the object-to-be-measured (1) with a surface position of the plate (3).