Abstract:
A simple and economical process for rendering the fine fraction, from crushing of vehicles and iron scraps, capable of being used in the manufacture of bituminous or cement-based conglomerates as partial substitutes of quarry inerts.Subject of the invention is also a reactor suitable for carrying out the above process.FIG. 1 shows an embodiment of the reactor.
Abstract:
Systems and methods for heating a non-combustion chemical reactor with thermal energy from a geothermal heat source are described. A working fluid is directed from the geothermal heat source to the chemical reactor to transfer heat. The working fluid can be circulated in a closed system so that it does not contact material at the geothermal heat source, or in an open system that allows the working fluid to intermix with material at the geothermal heat source. When intermixing with material at the geothermal heat source, the working fluid can transport donor substances at the geothermal heat source to the chemical reactor.
Abstract:
A vertically situated incinerator for receiving heated kiln off gases from a petroleum coke calcining process and incinerating volatile matter and carbon fines entrained in the gases. The incinerator also functions as a hot stack through which the gases are vented to atmosphere at times when any downstream equipment for receiving the gases are off line.
Abstract:
A process heater system (10) for an industrial envelope (11) comprises a main combustion chamber (20), an afterburner (30), and an exhaust stack (40). Retrofitted heat-recovery piping (50) receives combustion gas downstream of the afterburner (30) and uses it as a heat source for the industrial envelope. When the industrial load in the main combustion chamber (20) is paint, powder coating, varnish, epoxy, grease and/or oil, the secondary materials burned in the afterburner 30 can be considered alternative fuel, not solid wastes.
Abstract:
A reduction treatment apparatus can include a reduction furnace configured to reduce zinc and/or iron oxide through heat treatment of zinc-containing iron oxide or zinc oxide or iron oxide, with a reducing material. The reduction treatment apparatus also has an oxide inlet configured to supply to the reduction furnace the zinc-containing iron oxide or zinc oxide or iron oxide. The reduction treatment apparatus further has a reducing material inlet configured to supply to the reduction furnace the reducing material. The reducing material can comprise at least one of ASR, shredder dust of home electric appliances, waste plastics, refuse derived fuel, refuse paper and plastic fuel, sludge, oil mud, chips of wood, thread debris, rubber debris, and animal and plant residues. The reduction furnace can be configured to use the reducing material as a heating material and reduce the zinc-containing iron oxide or zinc oxide or iron oxide without auxiliary fuel.
Abstract:
A process and system for oil-contaminated soil remediation and oil recovery from oil-bearing media such as oil-contaminated soil, different types of oil-bearing sludge's from oil producers, upgraders and refineries, oil shale, oil sands, and coal oil shale, oil sands and coal includes (1) a portable or fixed twin thermal desorption unit with two rotating trundles in one stationary house, and (2) multiple co-combustion burners burning coal, scrap tires, used oils, sludge's containing high oil content, propane and natural gas to supply heat for the twin desorption unit, and (3) a suction fan to create a slightly vacuum environment, receive vapors and send them to (4) a cooling line with a heavy component condenser to condense heavy oils, a set of air cooling pipe to condense light oils and steam and a three-phase (gas/oil/water) separation tank to separate oil from water, and (5) a feeding line with a blender to break wet lumps and a crasher to break rocks presence in the raw material being processed.
Abstract:
A treatment method includes heating a treatment target object under reduced pressure in a hermetic zone to vaporize a component of the treatment target object, and opening a hermetic door and inserting a tube from a side of a treatment system for the vaporized component adjoining the hermetic zone with the hermetic door therebetween such that the tube shields the hermetic door from the hermetic zone to introduce the component vaporized from the treatment target object to the treatment system side.
Abstract:
An apparatus for thermally separating mercury and organic contaminants from inert substrate materials (such as soil, sludges, sediments, drilling muds and cuttings), comprising an essentially air-tight processing chamber having a substrate inlet and a substrate outlet, said chamber having two or more troughs for processing of the substrate, a means for indirectly heating the chamber, a means for moving substrate through the two or more throughs of the chamber from the substrate inlet to the substrate outlet, and a vapour condensate handling system for removing and condensing vapours from the chamber for processing to remove and recover contaminants.
Abstract:
An apparatus removes water and organic compounds from waste streams such as contaminated soils and refinery tailings by a combination of thermal stripping and molecular decomposition. The apparatus includes at least one unit having a pipe which is preferably heated by induction heating and also having a transport arrangement. The transport arrangement includes a suitable motor and operates to move the waste stream material through the pipe and mix the material to provide uniform heat transfer from the heated pipe. The transport arrangement preferably includes an adjustment mechanism which allows adjustment of the rate at which material moves through the pipe for a given motor speed. The adjustment mechanism also adjusts the mixing provided by the transport arrangement. Several of the treatment units according to the invention may be connected in series to form a multistage device. The initial stages may be operated at temperatures capable of thermally stripping water and light hydrocarbons from the waste stream while the later units may be operated at temperatures to cause remaining organic material to decompose.
Abstract:
A system for removing volatile coatings from scrap aluminum, such as expended beverage cans, includes a kiln, a fan for generating an airstream, an afterburner for heating the airstream, and ducting for confining the airstream in a closed loop so that it circulates through the afterburner, the kiln and back to the fan in that order. The ducting includes a bypass duct into which a portion of the airstream is diverted at a diverter value, before being heated by the afterburner. This portion reenters the heated portion of the airstream downstream from the afterburner and serves to modulate the temperature of the airstream entering the kiln. Indeed, the diverter valve responds to a temperature sensor where the airstream enters the kiln and maintains the temperature at that location constant. That temperature is hot enough to volatilize coatings on the aluminum, yet not hot enough to melt the aluminum. As it passes through the kiln the airstream possesses a diminished oxygen content, so that the volatilized coating does not ignite. The fan responds to another temperature sensor located where the airstream leaves the kiln such as to vary the mass flow, so that the temperature of the airstream leaving the kiln likewise remains constant. A collector exists in the ducting, between the kiln and the fan, and should its surfaces become cool enough to condense the volatilized coatings on them, the system recirculates some of the heated airstream to the collector to maintain the airstream entering it above a prescribed temperature.