Abstract:
A supercritical steam generator includes a downdraft furnace enclosure, a hopper tunnel, and a convection pass enclosure, with the hopper tunnel joining the downdraft furnace enclosure and convection pass enclosure together. Flue gas passes down through the downdraft furnace enclosure through the hopper tunnel and up through the convection pass enclosure. This structure permits the outlet steam terminals, which provide access to the resultant supercritical steam and/or reheat steam, to be located at a base of the steam generator rather than at the top of the steam generator as with conventional boilers. This reduces the length of the steam leads from the steam generator to a steam turbine that produces electricity using the supercritical steam.
Abstract:
In a wood-pellet cogeneration unit comprising a pellet feed, a combustion chamber, an ash removal device and a stirling engine, in order to achieve an optimum efficiency, provision is made for an exhaust gas recuperator (11) to preheat combustion air (10) and for wood pellets to be gasified with a portion of this hot air (13), for this portion (13) of the hot combustion air (10) to be directed above a grate (4) into a gasification combustion chamber (3a) and for the fuel gas (18) thus produced to be sucked downwards through the grate (4) together with the ash by a side channel blower (7), for the fuel gas (18) under the grate (4) to be displaced with a flow impulse of the rest (14) of the hot combustion air (10) in such a way that, firstly, a low lambda value close to the CO limit is maintained and, depending on the temperature of the combustion chamber (3b), the combustion at a central nozzle (19) is stabilized, or, with increasing temperature of the combustion chamber (3b), the state of flameless combustion increasingly appears, wherein a potential vortex (20) is produced in the combustion chamber (3b), said potential vortex (20) intensively mixing exhaust gas (6), fuel gas (18) and hot combustion air (14), such that fuel gas (18) and ash particles burn completely.
Abstract:
An automatic air intake control includes a timing mechanism that regulates the amount of air entering a combustion chamber enclosure during combustion of a fuel. The amount of air is regulated to provide an efficient and clean burn of a solid fuel. The control may include a cover, an actuating assembly, and a controller. The cover is movable between open and closed positions relative to an air passage opening into the combustion chamber enclosure. The actuating assembly is coupled to the cover and configured to move the cover between the open and closed positions. The controller is coupled to the actuating member and configured to control the position of the cover through the actuating member to regulate the air intake into the combustion chamber. The controller may be a time-based device such as a timer, or may be any other device that uses inputs associated with the combustion of fuel in the combustion chamber or a user's preferences for the characteristics of combustion in combustion chamber.
Abstract:
An incinerator includes a peripheral wall having a top end and formed with an inlet at the top end and an outlet below the inlet, a bowl-shaped grate disposed between the inlet and the outlet, a plurality of laterally extending baffles extending from a bottom end of the grate to the peripheral wall, and a plurality of vertically extending baffles disposed between the peripheral wall and the grate.
Abstract:
A furnace has a solid fuel hopper above a combustion chamber, an ash outlet below said combustion chamber, a combustion gas outlet at or below the level of the combustion chamber, and an auger in an ash chamber below the ash opening to regulate the size of an ash pile below the combustion chamber and hence control the escape of ash or fuel or non-combustibles through the ash opening. This enables the combustion gas outlet to be covered by hot coals within the combustion chamber so that any combustion gas from the combustion chamber or any pre-combustion zone must pass through a filter of hot coals before reaching the combustion gas outlet.
Abstract:
A combustion system for domestic or small industrial heating needs, utilizing biomass fuels such as wood and brush chips, sawdust, logs, nut hulls, peat, leaves and other organic waste products of forestry, agriculture and industry with essentially smokeless, clean exhaust. By preheating the combustion air, insulating the combustion process and carefully controlling the fuel to air proportions and mixing parameters, essentially complete combustion with very little excess air at high temperatures is achieved even with fuels containing over half their weight in water. This water is then condensed out of the exhaust gases in uniquely designed air and water counterflow heat exchangers that can capture over 90% of the high heat value of the fuel. This invention is capable of maintaining clean combustion at high temperatures with little excess air, at burn rates much lower than the best popular "air-tight" woodstoves and is capable of higher heat outputs than most domestic heat plants. This biomass-fueled furnace does not require electric fans or controls and can be used where electricity is unavailable.
Abstract:
A particle fuel burning furnace has an upper combustion chamber for holding a pile of particle fuel and burning the same from the bottom thereof. The furnace also includes a lower combustion chamber for afterburning combustible gases given off by the burning of solid fuel in the upper chamber and a series of spaced apart vertically-extending passageways arranged in a row and interconnecting the upper and lower chambers for communicating the combustible gases from the upper to the lower chamber. A first improved feature relates to a particle fuel delivery control device which operates an auger for filling the upper chamber with particle fuel to a desired level. A beam of light is transmitted and reflected between a photoelectric cell and reflector respectively of the device. When the particle fuel pile has grown in height during filling to the desired level the light beam is interrupted and filling is terminated. A second improved feature relates to a particle fuel diversion structure positioned in space relationship above and overlying the row of passageways. The structure forms a horizontal slot which extends laterally from the passageways which prevents particles of fuel from falling through the passageways and relocates the flame which burns the particle fuel pile from the bottom to a region away from the passageways.