摘要:
A compressed natural gas (CNG) fueling system has a single compressor comprising a first compression stage and a subsequent compression stage, wherein the first compression stage feeds the subsequent compression stage when filling a storage tank, the storage tank is configured to receive CNG from at least one of the first compression stage and the subsequent compression stage of the compressor when filling the storage tank, a CNG feedback to the subsequent compression stage of the compressor from the storage tank, the CNG being introduced back into the compressor at a location downstream relative to an output of the first compression stage, and a first heat exchanger associated with the CNG feedback.
摘要:
A skid for capturing refrigeration from liquefied natural gas vaporization is disclosed comprising a first heat exchanger mounted on the skid, the first heat exchanger having a natural gas inlet, a natural gas outlet, a process fluid inlet, and a process fluid outlet. The process fluid is configured to flow from the process fluid inlet through the first heat exchanger to the process fluid outlet and then to the process fluid inlet. Other embodiments of the system for capturing refrigeration from vaporization of liquid natural gas, and methods for its use, are described herein.
摘要:
A compressed natural gas (CNG) fueling system has a single compressor comprising a first compression stage and a subsequent compression stage, wherein the first compression stage feeds the subsequent compression stage when filling a storage tank, the storage tank is configured to receive CNG from at least one of the first compression stage and the subsequent compression stage of the compressor when filling the storage tank, a CNG feedback to the subsequent compression stage of the compressor from the storage tank, the CNG being introduced back into the compressor at a location downstream relative to an output of the first compression stage, and a first heat exchanger associated with the CNG feedback.
摘要:
A fuel storage and distribution system for a gas-fueled sea-going vessel comprises a thermally insulated gas tank for storing liquefied gas fuel. A local heat transfer circuit is configured to extract heat from an external heat source circuit. As a part of said local heat transfer circuit a heating arrangement is configured to heat gas fuel for increasing pressure inside the gas tank. As a part of said local heat transfer circuit is a main gas evaporator for evaporating liquefied gas fuel drawn from the gas tank for delivery to an engine of the sea-going vessel.
摘要:
A method for vaporizing a liquefied natural gas (LNG) stream and recovering heavier hydrocarbons from the LNG utilizing a heat transfer fluid is disclosed.
摘要:
A process and apparatus that includes a cryogenic source for providing a cryogenic fluid for vaporization, a cryogenic pump in fluid flow communication with the cryogenic source for increasing the pressure of the cryogenic fluid, an unfired vaporizer coolant circuit 110 in fluid flow communication with the cryogenic pump and adapted to accept the cryogenic fluid to form a heated stream, a direct-fired vaporizer downstream and in fluid flow communication with the unfired vaporizer coolant circuit 110 and adapted to accept the heated stream from the unfired vaporizer coolant circuit to form a superheated stream; and a diesel engine power unit 118 to provide power to the cryogenic pump, the unfired vaporizer coolant circuit 110, and the direct-fired vaporizer.
摘要:
A warming system for a high pressure hydrogen gas storage tank in a motor vehicle for maintaining the temperature of the gas within the tank and the gas flow control components associated with one or more boss at the tank ends above the lower design temperature tolerance limit of the tank and components associate with the utilizing the Joule-Thomson effect in gas flowing from the tank to recycles the mechanical energy of heat compression in high pressure hydrogen fuel to warm the gas within the tank as the high pressure gas is utilized.
摘要:
The present invention provides a power and regasification system based on liquefied natural gas (LNG), comprising a vaporizer by which liquid motive fluid is vaporized, said liquid motive fluid being LNG or a motive fluid liquefied by means of LNG; a turbine for expanding the vaporized motive fluid and producing power; heat exchanger means to which expanded motive fluid vapor is supplied, said heat exchanger means also being supplied with LNG for receiving heat from said expanded fluid vapor, whereby the temperature of the LNG increases as it flows through the heat exchanger means; a conduit through which said motive fluid is circulated from at least the inlet of said vaporizer to the outlet of said heat exchanger means; and a line for transmitting regasified LNG.
摘要:
The present invention relates to a process and apparatus for regasifying a cryogenic liquid to gaseous form. Heat is transferred from ambient air to the cryogenic liquid across a heat transfer surface by circulating the cryogenic liquid or an intermediate fluid through an atmospheric vaporizer, wherein he ambient air and the cryogenic fluid or intermediate fluid are not in direct contact. A layer of ice forms on an external portion of the heat transfer surface exposed to the atmosphere where the temperature at the heat transfer surface is below the freezing temperature of water. The layer of ice is dislodged intermittently from the vaporizer using a source of heat operatively associated with a control device, the control device arranged to generate a signal when de-icing is required. De-icing is achieved without the need to discontinue circulating the cryogenic fluid or the intermediate fluid through the vaporizer.
摘要:
A liquefied natural gas carrier uses a diesel engine or gas turbine propulsion plant fitted with a shipboard regasification system. The propulsion plant can provide either a direct mechanical drive of the propeller shaft and propeller, or can be fitted with an integrated electric power plant using an electric motor or motors to drive the propeller shaft and propeller. The regasification system includes a heat input source of exhaust gas heat exchangers, electric water heaters and supplemental heaters to provide an additional heat source to a hot water circulating loop. The liquefied natural gas contacts the hot water or heating medium circulating loop and is regasified. An undersea conduit from the ship transmits the regasified natural gas to an on shore plant.