Abstract:
A turbine housing for an exhaust turbocharger is configured for receiving a turbine wheel rotatable about an axis. The housing includes an exhaust gas inlet, an exhaust gas outlet pointing in an outlet direction, and a single-flow, spiral exhaust gas routing. The routing has a volute and a volute outlet gap configured so that exhaust gas flows from the volute to the wheel. The routing is fluidically connected to the inlet and is defined by an internal wall of the housing. The volute has a portion which encircles the axis and has a convexity of the internal wall. The convexity, counter to the outlet direction, extends beyond the volute outlet gap. Further, sectional faces, through which the axis runs, each have a volute contour with a straight linear portion. The linear portion, conjointly with the axis, defines an angle facing the outlet that is less than or equal to 90°.
Abstract:
In a structure for internally cooling a turbine blade, a cooling medium passage is provided in the turbine blade. The cooling medium passage has a shape in which a plurality of cylindrical spaces, each having substantially cylindrical shape, extending in parallel with each other partially overlap each other. A cooling medium supply passage that supplies a cooling medium to the cooling medium passage is connected to a portion of the cooling medium passage that includes a peripheral wall, in a direction that forms an acute angle with respect to a longitudinal direction of the cooling medium passage.
Abstract:
A spiral cooling system for cooling an aft turbine casing of a gas turbine engine. The gas turbine engine includes a turbine casing having a fore end and an aft end, a star bearing support member supporting a bearing housing and including a plurality of struts each mounted to an aft flange at the aft end of the turbine casing. The turbine casing includes an outer casing wall and an inner casing wall at the aft end defining an airflow plenum therebetween that receives cooling air at an input end opposite to the aft flange. The spiral cooling system includes a plurality of fins secured to an inside surface of the outer wall and being spaced from the inner wall that directs the airflow from the input end in a circular manner around the plenum to an output end of the plenum.
Abstract:
A fuel cooled cooling air heat exchanger includes a fuel injector and an airflow body. The fuel injector has a fuel flow passage formed therein that includes a fuel inlet port and a fuel outlet port. The airflow body is coupled to and surrounds at least a portion of the fuel injector. The airflow body has an inner surface that is spaced apart from the fuel injector to define an airflow passage between the airflow body and the fuel injector, and the airflow passage includes an air inlet port and an air outlet port.
Abstract:
A fluid delivery assembly for delivering fluid to a component in a gas turbine engine includes a rotating shaft having a central bore and at least one fluid exhaust in communication with the central bore for centrifugally expelling fluid, and a delivery scoop disposed around the rotating shaft and spaced apart from the rotating shaft by an annular gap. The delivery scoop includes an annular body having at least one impingement surface facing the at least one fluid exhaust and configured to scoop the fluid expelled by the at least one fluid exhaust. The impingement surface has at least one outlet for delivering the scooped fluid to the component. A method of delivering pressurised fluid in a fluid system is also presented.
Abstract:
An integrated single-piece exhaust system (SPEX) with modular construction that facilitates design changes for enhanced aerodynamics, structural integrity or serviceability. The SPEX defines splined or curved exhaust path surfaces, such as a series of cylindrical and frusto-conical sections that mimic curves. The constructed sections may include: (i) a tail cone assembly fabricated from conical sections that taper downstream to a reduced diameter; or (ii) an area-ruled cross section axially aligned with one or more rows of turbine struts; or both features. Modular inner and outer diameter inlet lips enhance transitional flow between the last row blades and the SPEX, as well as enhance structural integrity. Modular strut collars have large radius profiles between the SPEX annular inner diameter and outer diameter flow surfaces, for enhanced airflow and constant thickness walls for uniform heat transfer and thermal expansion. Scalloped mounting flanges enhance structural integrity and longevity.
Abstract:
A segmented turbine shroud for radially encasing a rotatable turbine in a gas turbine engine comprising a carrier, a ceramic matrix composite (CMC) seal segment, and an elongated pin. The carrier defines a pin-receiving carrier bore and the CMC seal segment defines a pin-receiving seal segment bore. The elongated pin extends through the carrier bore and the seal segment bore. The pin-receiving carrier bore includes a cantilevered member such that the carrier bore has a length sufficient to effect radial flexion between the carrier bore and the pin received within the carrier bore during operation of the turbine.
Abstract:
A blade or vane row including a plurality of blade or vane segments (10), each including a blade or vane body (11), being disposed in a rotational direction to form an annular shape and defining a flow path (R) along which working fluid (G) flows. The blade or vane segments (10) each have an end wall portion (12, 13) that faces the flow path (R) and extends in a rotational direction. The blade or vane body extends from the end wall portion, and the blade or vane body is disposed in the flow path (R). Surfaces (15A, 15B) of the end wall portion (12, 13) in the rotational direction each include an inclined portion (16). The inclined portion is inclined so as to extend to a flow path (R) side and downstream in a turn direction of the working fluid (G) that flows along the flow path (R).
Abstract:
An integrated single-piece exhaust system (SPEX) with modular construction that facilitates design changes for enhanced aerodynamics, structural integrity or serviceability. The SPEX defines splined or curved exhaust path surfaces, such as a series of cylindrical and frusto-conical sections that mimic curves. The constructed sections may include: (i) a tail cone assembly fabricated from conical sections that taper downstream to a reduced diameter; or (ii) an area-ruled cross section axially aligned with one or more rows of turbine struts; or both features. Modular inner and outer diameter inlet lips enhance transitional flow between the last row blades and the SPEX, as well as enhance structural integrity. Modular strut collars have large radius profiles between the SPEX annular inner diameter and outer diameter flow surfaces, for enhanced airflow and constant thickness walls for uniform heat transfer and thermal expansion. Scalloped mounting flanges enhance structural integrity and longevity.
Abstract:
A fluid delivery assembly for delivering fluid to a component in a gas turbine engine includes a rotating shaft having a central bore and at least one fluid exhaust in communication with the central bore for centrifugally expelling fluid, and a delivery scoop disposed around the rotating shaft and spaced apart from the rotating shaft by an annular gap. The delivery scoop includes an annular body having at least one impingement surface facing the at least one fluid exhaust and configured to scoop the fluid expelled by the at least one fluid exhaust. The impingement surface has at least one outlet for delivering the scooped fluid to the component. A method of delivering pressurised fluid in a fluid system is also presented.