Abstract:
One embodiment of the present invention is a unique compressor. Another embodiment of the present invention is a unique gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for blade tip clearance control for compressors and gas turbine engine compressors. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
Abstract:
A segmented turbine shroud for radially encasing a rotatable turbine in a gas turbine engine comprising a carrier, a ceramic matrix composite (CMC) seal segment, and an elongated pin. The carrier defines a pin-receiving carrier bore and the CMC seal segment defines a pin-receiving seal segment bore. The elongated pin extends through the carrier bore and the seal segment bore. The pin-receiving carrier bore includes a cantilevered member such that the carrier bore has a length sufficient to effect radial flexion between the carrier bore and the pin received within the carrier bore during operation of the turbine.
Abstract:
A ceramic matrix composite (CMC) seal segment for use in a segmented turbine shroud for radially encasing a turbine in a gas turbine engine. The CMC seal segment comprises an arcuate flange having a surface facing the turbine and a portion defining a bore for receiving an elongated pin, with the bore having a length that is at least 70% of the length of the elongated pin received therein. The CMC seal segment is carried by the carrier by at least one of the elongated pins being received within the bore. The CMC seal segment portion defining a pin-receiving bore is radially spaced from the arcuate flange by a spacing flange extending radially outward from the arcuate flange.
Abstract:
A flow path is disclosed that is capable of being deployed when needed and stowed in a relatively small space when not in use. The flow path device is flexible and may be made from a variety of materials. In an illustrative embodiment the flow path device is annular and transitions from an ellipsoidal annular shape to a quadrilateral annular shape. A vane box can be disposed at one end of the flow path device. Doors can be coupled to the vane box to cover the flow path device. The doors can be used to provide a structural load path for the flow path device and vane box. The doors and the flow path device can be moved together such that the doors uncover the flow path device as the device is deployed.
Abstract:
A gas turbine engine airfoil including at least one outer tile coupled to a supporting member. The outer tile is coupled to the supporting member by a pin passing though the supporting member and the outer tile.
Abstract:
A shroud for radially encasing a turbine in a gas turbine engine is provided. The shroud comprises a carrier which defines a pin-receiving carrier bore, and a ceramic matrix composite (CMC) seal segment comprising an arcuate flange with a surface facing the turbine and a part that defines a pin-receiving seal segment bore. The seal segment bore is radially spaced from the arcuate flange by a spacing flange which extends radially outward from the arcuate flange to effect receipt within the seal segment bore of an elongated pin. The elongated pin extends through the carrier bore and the seal segment bore, and the elongated pin has a lateral cross-sectional dimension of at least three-eighths of an inch.
Abstract:
A unique compressor includes a rotating compressor blade having a blade tip; a compressor case having a blade track disposed opposite the blade tip; and a tip clearance control system including a fluid impingement structure. This structure has a plurality of openings to impinge a fluid received from a diffuser onto the compressor case. The tip clearance control system is configured to control a clearance between the blade tip and the blade track by impinging the fluid onto the compressor case and modulating the same with a valve in fluid communication with the diffuser. A further form includes a unique gas turbine engine having a compressor with a compressor blade tip, a compressor case disposed opposite the blade tip, and a fluid impingement structure having openings to impinge a fluid onto the case. Also included are other apparatuses, systems, devices, hardware, methods, and combinations for compressor blade tip clearance control.
Abstract:
A flow path is disclosed that is capable of being deployed when needed and stowed in a relatively small space when not in use. The flow path device is flexible and may be made from a variety of materials. In an illustrative embodiment the flow path device is annular and transitions from an ellipsoidal annular shape to a quadrilateral annular shape. A vane box can be disposed at one end of the flow path device. Doors can be coupled to the vane box to cover the flow path device. The doors can be used to provide a structural load path for the flow path device and vane box. The doors and the flow path device can be moved together such that the doors uncover the flow path device as the device is deployed.
Abstract:
An active blade clearance control system for a gas turbine engine. The clearance between the tip of a rotatable blade and an inner surface of a blade track is adjusted by moving the blade track relative to the tip of the blades. A split control ring is manipulated to adjust tension therein and a resulting force is transmitted to an inner member. The plurality of blade tracks are coupled to the inner member and move in response to the force transmitted from the split control ring.
Abstract:
A ceramic matrix composite (CMC) seal segment for use in a segmented turbine shroud for radially encasing a turbine in a gas turbine engine. The CMC seal segment comprises an arcuate flange having a surface facing the turbine and a portion defining a bore for receiving an elongated pin, with the bore having a length that is at least 70% of the length of the elongated pin received therein. The CMC seal segment is carried by the carrier by at least one of the elongated pins being received within the bore. The CMC seal segment portion defining a pin-receiving bore is radially spaced from the arcuate flange by a spacing flange extending radially outward from the arcuate flange.