Abstract:
An ignition system for automobile industry is disclosed. The system includes a high voltage source to initiate the spark and a low voltage source to add additional energy to the spark and the initiation of the spark and adding of the additional energy to the spark is carried out while the primary winding of the transformer is conducting. This high energy ignition system is carried out using the transformer with a secondary high voltage winding. The spark generation and adding additional energy is carried out using both capacitive and inductive transfer system using the transformer. Different ways of generating high voltage are also disclosed. Both single switch method and two switch method and multiple switch methods are also disclosed. Current controlled spark generation and multiple pulse method are also disclosed. The system delivers more energy efficiently while the primary is on and with smaller transformer and faster current rise.
Abstract:
An electronic device for controlling an ignition coil of an internal combustion engine includes a high voltage switch, a driving unit and a control unit. The driving unit controls the closure of the switch during charging energy in the primary winding and the opening of the switch during transferring energy from the primary winding to a secondary winding. A current measuring circuit is connected in series to a second terminal of the secondary winding to detect current generated on the secondary winding during the charging step and generate a signal representative of the detected current. The control unit receives the signal representative of the current detected by the measuring circuit, compares a relevant value of such signal with a predefined first reference value and activates a mode for detecting a soiling of the spark plug when the relevant value of the signal exceeds said predefined first reference value.
Abstract:
A controller device of an engine ignition circuit includes: a driver circuit that controls a voltage of a control terminal of a first switching element for controlling an ignition timing of an ignition circuit of an engine, based on a timing signal supplied from an engine control unit for controlling the engine; and an auxiliary driver circuit that supplies the timing signal to the control terminal of the first switching element when a battery voltage supplied to the driver circuit becomes equal to or lower than a threshold value.
Abstract:
An ignition system for a tandem-type hybrid vehicle. The tandem-type hybrid vehicle comprises a plurality of engines (100, 110, 120, 130, 140, 150). The ignition system comprises: a plurality of ignition coils (101), each of the engines being configured to have at least one of the ignition coils, and each of the ignition coils comprising a primary winding and a secondary winding which are mutually matched; a single igniter (200) provided with a plurality of output ports (103) with the quantity corresponding to that of the plurality of ignition coils, each of the output ports being connected to the primary winding of one corresponding ignition coil so as to control the connection and disconnection of a current in the primary winding of the ignition coil; and an electronic control unit (300) for determining, according to a current power demand of the tandem-type hybrid vehicle, the engine to be started in the plurality of engines, determining the ignition coil to be boosted in the ignition coils in the engine to be started and issuing a corresponding ignition instruction, wherein the single igniter controls, according to the ignition instruction, the connection and disconnection of the current in the primary winding of the corresponding ignition coil to be boosted.
Abstract:
Plasma generator has an ignition coil for supplying a discharge voltage, an electromagnetic wave oscillator that generates electromagnetic waves, a mixer that mixes energy for discharge with electromagnetic wave energy, and an ignition plug that causes a discharge and introduces the electromagnetic wave energy to a reaction region. The discharge and electromagnetic wave energy are used together in the reaction region, wherein a combustion reaction or plasma reaction is carried out, triggering a combustion reaction or plasma reaction. Part of a member that constitutes the ignition plug is used as part of a member that forms the mixer.
Abstract:
An ignition control apparatus of the present embodiment controls operation of an ignition plug provided so as to ignite an air-fuel mixed gas. The ignition control apparatus is characterized in that the ignition control apparatus includes: an ignition coil provided with a primary winding which allows a current to pass as a primary current therethrough and a second winding connected to the ignition coil, an increase and a decrease in the primary current generating a secondary current passing through the secondary winding; a DC power supply provided with a non-ground side output terminal, the non-ground side output terminal being connected to one end of the primary winding so that the primary current is made to pass through the primary winding; a first switching element configured of a semiconductor switching element provided with a first control terminal, a first power side terminal, and a first ground side terminal, the semiconductor switching element controlling on and off states of current supply between the first power side terminal and the first ground side terminal based on a first control signal inputted to the first control terminal, the first power side terminal being connected to the other end side of the primary winding, the first ground side terminal being connected to a ground side; a second switching element configured of a semiconductor switching element provided with a second control terminal, a second power side terminal, and a second ground side terminal, the semiconductor switching element controlling on and off states of current supply between the second power side terminal and the second ground side terminal based on a second control signal inputted to the second control terminal, the second ground side terminal being connected to the other end side of the primary winding; a third switching element configured of a semiconductor switching element provided with a third control terminal, a third power side terminal, and a third ground side terminal, the semiconductor switching element controlling on and off states of current supply between the third power side terminal and the third ground side terminal based on a third control signal inputted to the third control terminal, the third power side terminal being connected to the second power side terminal of the second switching element, the third ground side terminal being connected to the ground side; and an energy accumulation coil configured of an inductor, the inductor being interposed in a power line connecting the non-ground side output terminal of the DC power supply and the third power side terminal of the third switching element, the energy accumulation coil accumulating energy therein in response to turning on of the third switching element.
Abstract:
An ignition apparatus includes a spark plug having a high voltage electrode and an external electrode facing each other across a gap and being configured to generate a spark discharge in the gap to ignite a combustible fuel mixture in a combustion chamber of an internal combustion engine, an ignition coil device configured to generate a predetermined high voltage and supply the high voltage to the high voltage electrode to form a path for the spark discharge in the gap, a high frequency power supply having a band-pass filter and being configured to supply an alternating current to the spark discharge path, and a control device configured to control operation timing of the high frequency power supply. The band-pass filter passes a frequency of from 1 MHz to 4 MHz.
Abstract:
A voltage transformer circuit is described for supplying a spark plug with ignition energy and for ionic current measurement. A transformer of the circuit generates a secondary voltage from a primary voltage and applies the secondary voltage to the spark plug to ignite an electric arc. Using a current effected by the secondary voltage, a capacitor is charged to a breakdown voltage of a Zener diode bridging the same, via a first branch, which leads from the transformer to a first of two sides of the capacitor. The primary voltage is disconnected from the transformer in order to extinguish the electric arc. The capacitor delivers charges for an ionic current via a second branch, which connects the second side of the capacitor to the transformer. A measuring signal of the ionic current is obtained by measuring a voltage drop at a measuring resistor.
Abstract:
A connection device for connecting a first power supply and a second power supply to an ignition plug has a first power supply side line which establishes electrical connection between the ignition plug and the first power supply and which is electrically connected to the second power supply, and a second power supply side line which establishes electrical connection between the ignition plug and the second power supply. The first power supply side line includes a first diode which prevents a current inflow from the second power supply into the first power supply or a current inflow from the first power supply into the second power supply, and an inductor disposed between the first diode and the ignition plug. The inductor is disposed around the second power supply side line while being separated from the second power supply side line. Thus, noise can be suppressed.
Abstract:
An embodiment of an ignition device comprises an ignition coil including a first winding and a second winding electromagnetically coupled to each other, a first switch electrically connected to a first end of the first winding, a battery electrically connected to a second end of the first winding, a booster with a first end electrically connected to the battery, a second switch electrically connected to a second end of the booster and to the second end of the first winding, and a drive device electrically connected to the first switch, that turns the first switch and the second switch on and off. The drive device feeds a secondary current to the second winding by changing the first switch from an on-state to an off-state, and supplies an output from the booster to the first winding by changing the second switch from an off-state to an on-state.