摘要:
An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.
摘要:
An ignition apparatus for an internal-combustion engine includes a main ignition CDI circuit that has a main ignition boosting circuit boosting battery voltage and a main ignition capacitor storing electric charge boosted by the main ignition boosting circuit, and that releases the electric charge stored in the main ignition capacitor to a primary coil of an ignition coil to make an ignition plug generate spark discharge, and an energy input circuit that has an energy input boosting circuit boosting battery voltage and an energy input capacitor storing electric charge boosted by the energy input boosting circuit, and that releases the electric charge stored in the energy input capacitor to the primary coil, during a spark discharge started by operation of the main ignition CDI circuit, to make a secondary current flow in the same direction and to a secondary coil of the ignition coil, thereby making spark discharge continue which is started by the operation of the main ignition CDI circuit.
摘要:
A plasma ignition device 20 includes a spark plug 100, a DC power supply 210, an AC power supply 220, and a coupling section 300. The coupling section 300 includes a capacitor 320 which electrically connects the AC power supply 220 to the spark plug 100. The coupling section 300 reduces the capacitance of the capacitor 320 in the second ignition mode in which transmission of AC power is halted, as compared with that in the first ignition mode in which AC power is transmitted to the spark plug 100.
摘要:
A capacitive igniter with a flameout time-delay function is provided. A first terminal of a flameout time-delay circuit is electrically connected with a common connecting point of a charge-discharge circuit and a charging coil L1. A second terminal of the flameout time-delay circuit is electrically connected with a trigger circuit. A third terminal of the flameout time-delay circuit is grounded through a flameout switch S1. By means of the capacitive igniter with the flameout time-delay function, it can be guaranteed that an engine is stably and reliably shut down under the action of the flameout time-delay circuit when the engine needs to be shut down even if the flameout switch S1 is switched off in the flameout process, and the potential safety hazards that the engine works again due to the fact that the flameout switch S1 is switched off in the flameout process can be effectively avoided.
摘要:
An ignition system includes: a step-up transformer having a primary side and a secondary side; an electric energy source which is able to be connected to the primary side; a spark gap, which is designed to carry a current transferred to the secondary side by the step-up transformer. The step-up transformer has a bypass for transferring electric energy from the electric energy source to the secondary side. The bypass is designed to support a decaying electrical signal in the secondary coil of the high-voltage generator as of a predefined time, or as of a predefined intensity of the current being reached.
摘要:
An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.
摘要:
A circuit for controlling an ignition coil that attenuates the feed forward voltage by slowing the initial turn-on of the coil driver is disclosed. The turn-on circuit includes a control signal input node, a capacitor, a resistor, a diode, and a coil driver. The control signal input node receives a coil control signal from an ignition control system. The capacitor begins charging as the control signal is received by the turn-on circuit. As the capacitor charges it gradually increases the voltage provided to the coil driver. The rate of the increase in voltage is controlled by the selection of the resistor and capacitor. The slowing of the initial turn-on of the coil driver has the effect of attenuating the feed forward voltage. The attenuating of the feed forward voltage minimizes degradation of the spark gap while allowing the elimination of the high voltage zener diode.
摘要:
An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.
摘要:
An apparatus for controllably generating sparks is provided. The apparatus includes a spark generating device; at least two output stages connected to the spark generating device; means for charging energy storage devices in the output stages and at least partially isolating each of the energy storage devices from the energy storage devices of the other output stages; and, a logic circuit for selectively triggering the output stages to generate a spark. Each of the output stages preferably includes: (1) an energy storage device to store the energy; (2) a controlled switch for selectively discharging the energy storage device; and (3) a network for transferring the energy discharged by the energy storage device to the spark generating device. In accordance with one aspect of the invention, the logic circuit, which is connected to the controlled switches of the output stages, can be configured to fire the stages at different times, in different orders, and/or in different combinations to provide the spark generating device with output pulses having substantially any desired waveshape and energy level to thereby produce a spark having substantially any desired energy level and plume shape at the spark generating device to suit any application.
摘要:
A circuit for controlling an ignition coil that attenuates the feed forward voltage by slowing the initial turn-on of the coil driver is disclosed. The turn-on circuit includes a control signal input node, a capacitor, a resistor, a diode, and a coil driver. The control signal input node receives a coil control signal from an ignition control system. The capacitor begins charging as the control signal is received by the turn-on circuit. As the capacitor charges it gradually increases the voltage provided to the coil driver. The rate of the increase in voltage is controlled by the selection of the resistor and capacitor. The slowing of the initial turn-on of the coil driver has the effect of attenuating the feed forward voltage. The attenuating of the feed forward voltage minimizes degradation of the spark gap while allowing the elimination of the high voltage zener diode.