摘要:
A circuit for controlling an ignition coil that attenuates the feed forward voltage by slowing the initial turn-on of the coil driver is disclosed. The turn-on circuit includes a control signal input node, a capacitor, a resistor, a diode, and a coil driver. The control signal input node receives a coil control signal from an ignition control system. The capacitor begins charging as the control signal is received by the turn-on circuit. As the capacitor charges it gradually increases the voltage provided to the coil driver. The rate of the increase in voltage is controlled by the selection of the resistor and capacitor. The slowing of the initial turn-on of the coil driver has the effect of attenuating the feed forward voltage. The attenuating of the feed forward voltage minimizes degradation of the spark gap while allowing the elimination of the high voltage zener diode.
摘要:
An energy-on-demand vehicular ignition system, particularly a coil-per-plug system ("CPP") with a programmable re-striking and minimum single-strike energy output whereby at idle engine speed and lowest load, each coil will be re-struck or discharged the maximum number of times permitted by the coil design within a limited time interval representing the beginning of the combustion event and occurring within 0-2% MFB, and preferably within 0.5% MFB, of the ignitable air fuel mixture within the combustion chamber. The CPP system also includes programmable re-striking whereby the system will default to a single-strike at conditions above a predetermined range of operating conditions, in particular, at a particular engine speed condition and a particular engine partial load condition. In between the conditions at (i) idle engine speed and lowest load on the one hand and, (ii) a predetermined engine speed and partial load condition. The ignition strategy includes the coil being re-struck more than once, but less than the maximum number of re-strikes permitted by the coil design, with the particular number of re-strikes being determined in accordance with a preset schedule as predetermined to be ideal for complete combustion at the operating conditions being sensed.
摘要:
A method for detecting misfire in a cylinder of an internal combustion engine through the ignition system of the engine. The present invention first predicts a time-to-fire measurement for an interrogating spark, then measures the actual time-to-fire measurement of the interrogating spark and then compares the predicted measurement and the actual measurement to determine whether misfire has occurred.
摘要:
An ignition system for multi-firing a spark plug of a spark ignition internal combustion engine and for detecting auto-ignition utilizing the spark plug as a feedback element. The ignition system includes a pulse transformer connected to a spark plug, a distribution element coupled to the transformer, a timing element connected to the distribution element, a controller, an engine position sensor and a spark discharge detection circuit. Based on engine parameters, the controller loads the timing element with the appropriate signals and triggers one of three timers. The triggered timer begins to count down and times-out at the appropriate engine position either ignition or simply for auto-ignition. This triggers a second timer which enables yet another timer that provides control signals to the distribution element to produce a series of voltage signals of a predetermined magnitude applied by the transformer at the spark plug. These control signals are continuously provided until the second timer times-out ending that cycle of the system. If auto-ignition is occurring in the combustion cylinder, at least one of the voltage signals applied at the spark plug will discharge. The discharge circuit will sense the discharge and provide a signal to the controller indicating auto-ignition thereby allowing the controller to respond accordingly.
摘要:
An energy-on-demand vehicular ignition system with a programmable re-striking and minimum single-strike energy output whereby at idle engine speed and lowest load, each coil will be re-struck or discharged the maximum number of times permitted by the coil design within a limited time interval representing the beginning of the combustion event and occurring within 0-2% MFB of the ignitable air fuel mixture within the combustion chamber. The system strategy also includes programmable re-striking whereby the system will default to a single-strike at conditions above a predetermined range of operating conditions, in particular, at a particular engine speed condition and a particular engine partial load condition. In between the conditions at (i) idle engine speed and lowest load on the one hand and, (ii) a predetermined engine speed and partial load condition. The ignition strategy includes the coil being re-struck more than once, with the particular number of re-strikes being determined in accordance with a preset schedule as predetermined to be ideal for complete combustion at the operating conditions being sensed.