Abstract:
A method is disclosed for controlling spark distribution for an internal combustion engine. The method incorporates the use of an electronic distributor that is capable of being used with a number of internal combustion engines. The electronic distributor receives signals from the crankshaft and the camshaft with respect to their respective locations to identify which of the cylinders is to have the fuel found therein ignited. The electronic distributor is versatile because it uses the crankshaft position sensor as a clock signal. This enables the electronic distributor to be timed with any engine control unit/internal combustion engine combination having the same required inputs as the electronic distributor has outputs. Further, an electronic distributor is disclosed having an engine selection device that matches a counter incorporated into the electronic distributor to the internal combustion engine. This allows the electronic distributor to be retrofit to be utilized by a plurality of internal combustion engines. The engine selection device determines what type of internal combustion engine it is being incorporated into and what type of signals are being received from the sensors used to identify the rotational position of the camshaft and the crankshaft.
Abstract:
An improved turbine engine ignition exciter circuit. Energy stored in an exciter tank capacitor is subsequently switched to the load (igniter plug) through a novel thyristor switching device specifically designed for pulse power applications. The switching device is designed and constructed to include, for example, a highly interdigitated cathode/gate structure. The semiconductor switching device is periodically activated by a trigger circuit which may be comprised of either electromagnetic or optoelectronic triggering circuitry to initiate discharge of energy stored in exciter tank capacitor to mating ignition lead and igniter plug. Likewise, the present invention allows new flexibility in the output PFN (Pulse Forming Network) stage, eliminating need for specialized protective output devices such as saturable output inductors. Due to considerably higher di/dt performance of the device, true high voltage output pulse networks may be utilized without damage to the semiconductor switching device. An exemplary embodiment of invention contains a novel feedback network which causes thyristor timing (trigger) and DC-DC converter circuits to compensate for varying igniter plug wear and dynamic engine combustor conditions, tailoring exciter spark rate, output voltage and energy to account for dynamic load conditions. The circuit further includes a low voltage lockout feature by comparing the input voltage with a reference voltage to selectively activate a charge pump in the exciter circuit.
Abstract:
The high-voltage semiconductor device includes a single chip having a plurality of semiconductor elements connected in series with each other which includes an insulating substrate (2); a monocrystalline semiconductor carrier (1) of a first conductivity type applied to the insulating substrate (2); at least two terminals (5,6) located on opposite sides of the chip; strip-like areas (3) of a second conductivity type formed in the monocrystalline semiconductor carrier (1), the strip-like areas (3) each extending across the semiconductor carrier (1) at right angles to a longitudinal direction between the at least two terminals, forming pn junctions in the semiconductor carrier (1), being spaced from each other in the longitudinal direction over the single chip and penetrating an entire thickness of the semiconductor carrier; at least one doped region (7) in the strip-like areas (3) forming an at least four layered component in the single chip; and a light responsive device for reducing a switching voltage of the single chip when the pn junctions are irradiated with light.
Abstract:
A transmitter arrangement for cylinder identification in an internal combustion engine having n cylinders, the arrangement comprises a transmitter disc driveable by a crankshaft of the internal combustion engine and having a plurality of angle marks and at least one distinguishable reference mark allocated to a fixed crankshaft angle, a transmitter disc driveable by a camshaft of the internal combustion engine and rotating half as quickly, the transmitter disc having a number of segments corresponding to the cylinder number n, the segments having two different lengths and two interspaces of different lengths between two segments each, two stationary pick-ups allocated to the transmitter discs and transmitting as a function of the marks passing by output signals having low phases and high phases, a control unit evaluating signals from the stationary pick-ups, the angle marks being arranged such that the output signal of each of the pick-ups contains during a first crankshaft revolution a sequence of low phases and high phases differing from that during a second crankshaft revolution, the angle marks being arranged also so that all spacings between same edges of one phase are the same, a number of angle marks corresponds to the number of cylinders n, and a position of the reference mark is selected such that a signal caused by it occurs with one phase of a camshaft signal during the first revolution of the crankshaft and with the other phase during the second revolution of the crankshaft.
Abstract:
A solid state, bipolar, ignition exciter for gas turbine engines is described for delivering high energy pulses to one or more igniter plugs. A storage capacitor is charged with typically 12 to 20 Joules of stored energy and discharged through a solid state switch and a series-connected ignitor plug. The solid state switch consists of a plurality of silicon controlled rectifiers (SCRs) connected in series, in combination with other components connected in parallel with each SCR. Protection is provided against transients in voltage by means of resistance-capacitance snubber circuits connected in parallel with each SCR. Protection is provided against transients in current by means of inductance connected externally, and in series with, the solid state switch. Protection is provided against damage from reverse voltages by means of a reverse current path through the solid state switch, typically by means of a diode or series-connected diode chain connected in parallel with the SCRs. Thus, the solid state switch of the present invention conducts current alternately in forward and reverse directions once the SCRs are switched to their conducting state, providing bipolar current flow to the igniter plug. Controlling means and short circuit protection circuits are also described.
Abstract:
A low-energy circuit and a high-energy circuit are operatively coupled in parallel between an energy source and an igniter. The low-energy circuit is for igniting the igniter to generate sparks between electrodes of the igniter, and the high-energy circuit is for characterizing an energy of the sparks generated between the electrodes of the igniter. A spark detector detects a presence of a spark between the electrodes of the igniter, and a control circuit enables an operation of the high-energy circuit only upon detection of the presence of a spark between the electrodes of the igniter by the spark detector.
Abstract:
A distributorless ignition system for an internal combustion engine which discharges only one spark plug at a time. A high-level reversible voltage potential in selectively induced in the secondary winding of an ignition coil. Opposing diodes connected to the secondary winding permit application of the induced voltage across only one of two spark plug gaps, the central electrode of the spark plug being negatively charged with respect to ground to effectuate discharge with reduced power requirements and electrode erosion.
Abstract:
An electronic distributor for an internal combustion engine, having a plurality of switching elements for conducting and breaking currents flowing to a plurality of ignition coils, a first lead frame for separately flowing the currents of the plurality of switching elements to the plurality of ignition coils and a second single lead frame for dropping current levels of currents of at least two switching elements of the plurality of switching elements to a common electric potential, characterized in that a resistance value of the first lead frames has been set to be larger than a resistance value of the second lead frame.
Abstract:
An ignition system (20) for an internal combustion engine (10) includes a spark plug assembly (21) having an optical passage (45) therethrough that allows an ultraviolet light beam (62) from a source (24) to enter the combustion chamber (8) and be directed to a gap (60) between two electrodes (36) and (38) that have a voltage differential applied therebetween to commence ignition in the combustion chamber.
Abstract:
A high-voltage switch (10), which is usable particularly as an ignition voltage distributor for applying the ignition voltage to spark plugs of an internal combustion engine, comprises a cascade circuit of optoelectronic semiconductor elements (11) which are actuated by means of incident light radiation. A plurality of photo semiconductor elements (11) are controlled by a light-emitting element (12) via a biconvex cylinder lens (30). A distribution of the radiation by means of light guide fibers (37) is also possible. The light-emitting elements (12) which are operated with low voltage can be arranged in a housing (36) separate from the high-voltage side by means of the use of light guides (37), so that a complete galvanic separation is achieved.