Abstract:
The arrangement for controlling the flow of laden gases is arranged upstream of an oil separation system and is provided with a check valve, a bypass valve and a stationary segment. The check valve is at least partially movable so as to define a first passage for a forward first flow direction in the event of positive pressure, while the bypass valve is moved rearward by negative pressure so as to clear a second passage for a second, opposite, flow direction. The stationary segment forms a seating surface for the bypass valve. The bypass valve, urged against the seating surface by an elastic biasing member, forms a seat for the check valve. In the event of sufficient negative pressure, the two valves are moved rearward together despite the biasing member and work together to redirect and guide the flow along an escape path corresponding to the second passage.
Abstract:
An oil separation device for separating oil from a gas stream for ventilating a crankcase of a combustion engine may include an inflow side and an outflow side. The inflow side can be fluidically connected to the crankcase of the combustion engine and may receive the gas stream laden with oil. The outflow side can be fluidically connected to an intake tract of the combustion engine and may receive the gas stream substantially purged of oil. The device may include a first control member for varying a first flow cross section of the gas stream and controlled by a gas pressure in the crankcase. The device may have a second control member for varying a second flow cross section of the gas stream positioned downstream of the first flow cross section, wherein the second control member is controlled by a vacuum in the intake tract of the combustion engine.
Abstract:
A working gas circulation engine includes a combustion chamber that can expand a working gas, which has a specific heat ratio higher than that of the air, with the combustion between an oxidizing agent and a fuel; a circulation path that can allow the working gas to circulate from a suction side to an exhaust side of the combustion chamber and can supply the same again to the combustion chamber; a feed means that can feed the gas in a pressure-reduction target section, which is the section whose pressure is to be reduced, to the outside, and a control means that operates the feed means for feeding the gas in the pressure-reduction target section, when the pressure in the pressure-reduction target section is higher than a predetermined pressure that is set in advance.
Abstract:
The pollution control system includes a PCV valve having an inlet and an outlet adapted to vent blow-by gas out from a combustion engine. A fluid regulator associated with the PCV valve selectively modulates engine vacuum pressure to adjustably increase or decrease a fluid flow rate of blow-by gas venting from the combustion engine. An integral oil trap fluidly coupled to the PCV valve condenses vaporized oil in the blow-by gas into a liquid for re-use in the combustion engine.
Abstract:
An electronically controlled blow-by gas returning apparatus for an internal combustion engine which corrects a fuel injection amount is disclosed. This blow-by gas returning apparatus is provided with an electronically controlled ventilation valve and a control unit. The ventilation valve regulates the flow rate of blow-by gas. The control unit controls the ventilation valve. The control unit controls the opening degree of the ventilation valve such that the actual value of the opening degree of the ventilation valve is maintained at a demand value of the opening degree of the ventilation valve. The control unit corrects the demand value based on the degree of enrichment of the actual air-fuel ratio in relation to a target air-fuel ratio and an intake air amount which is the amount of air fed into a combustion chamber of the internal combustion engine.
Abstract:
A method of oil flow management for a gas turbine engine includes moving oil from a tank to a compartment using a pressure pump, moving oil from the compartment to the tank using a scavenge pump, and at least temporarily increasing a rate at which oil is moved with the scavenge pump by a greater amount than a rate at which oil is moved with the pressure pump to create at least a partial vacuum to negatively pressurize the compartment to reduce oil leakage.
Abstract:
An engine system is disclosed. The engine system has an engine block having at least one combustion chamber and at least partially defining a crankcase. The engine system also has an inlet conduit connecting a compressor of a turbocharger with the at least one combustion chamber. The engine system further has an exhaust conduit connecting a turbine of the turbocharger with the combustion chamber and a ventilation conduit connecting the crankcase with the exhaust conduit. The engine system also has a controller in communication with the turbocharger, the controller being configured to adjust the geometry of the turbocharger to maintain a pressure of the crankcase lower than a pressure of the inlet conduit.
Abstract:
A device for cleaning of crankcase gas including a centrifugal separator having a housing and a separation chamber in which a rotor is arranged. The separator is connected to a gas inlet for conducting crankcase gas from the crankcase to the centrifugal separator and a gas outlet for conducting the cleaned gas from the separator. A motor is arranged to rotate the centrifugal rotor. A sensor is provided for detection of a parameter and is arranged to communicate with the control equipment. The control equipment is operatively connected to a valve for adjusting the flow of gas through the centrifugal separator. The control equipment is arranged to change the position of the valve in response to a detected change of the parameter such that the gas pressure in the crankcase is maintained at a predetermined value.
Abstract:
A method for checking the functioning of a ventilation apparatus for ventilating a crankcase connected via the ventilation apparatus to an air supply system of the internal combustion engine includes: determining a pressure difference between an ambient pressure and a crankcase pressure in the crankcase; identifying a fault in the ventilating apparatus as a function of the pressure difference if an enabling condition is met; the enabling condition being met if an air mass flow in the air supply system, filtered by a low-pass filter, exceeds a first threshold value in terms of absolute value.
Abstract:
The present invention relates to a ventilation device (5) for ventilating a crankcase (6) of an internal combustion engine (1), particularly in a motor vehicle, comprising a ventilation line (26), which is connected at the input side to the crankcase (6) of the internal combustion engine (1) in the mounted state, and which is connected at the output side to a fresh gas line (3) feeding fresh gas to the internal combustion engine (1), a ventilation line (27), which in the mounted state is connected to the fresh gas line (3) at the input side and to the crankcase (6) at the output side. A separator (28) is arranged in the ventilation line (26) to remove pollution from the gas that is discharged from the crankcase (6) and a pressure valve (3) is arranged in the ventilation line (26) to control the gas volume discharged from the crankcase (6). In order to increase the smoothness of running of the internal combustion engine (1) in idle, the ventilation device (5) comprises a locking device (37) for locking the ventilation line (27).