Abstract:
The present invention relates to a dipping method applied on hybrid cords comprised of aramide and aramide-Nylon 6.6 fibers essentially comprising the steps of preparing the primary dipping solution (11), applying the primary dipping solution onto the cords (12), applying the primary heat treatment (13), preparing the secondary dipping solution (14), applying the secondary dipping solution onto the cords (15), applying the primary heat treatment (16), and used as a reinforcing material inside the rubber.
Abstract:
Fibers sized with a coating of amorphous polyetherketoneketone are useful in the preparation of reinforced polymers having improved properties, wherein the amorphous polyetherketoneketone can improve the compatibility of the fibers with the polymeric matrix.
Abstract:
The present invention is generally directed to a nonwoven fabric having a plurality of coated fibers, the coating including silane and dialdehyde, and, in certain embodiments, further including particles.
Abstract:
A method is provided for the application of a finishing layer to a textile support material. A water repellent or oil repellent layer, a so-called finishing layer, is applied to a textile support material selected from the group of fibers, tissues, and fabrics. The water repellent or oil repellent finishing layer comprises at least two water repellent or oil repellent components wherein a first component comprises one or more dispersants and a second component comprises one or more dispersed phases or colloids, and wherein the dispersant and the dispersed phase are present in the gel state. Additionally, textile articles are provided having the novel water repellent or oil repellent finishing layer which are equal on a high level or even superior with respect to their functional properties to products prepared according to known finishing methods and at the same time allow a complete or partial substitution of the health and environmentally hazardous standard chemicals employed nowadays by novel compounds which have not been used to date.
Abstract:
Aqueous dispersions (U) containing: (A) a UV-light-absorbing textile treatment agent, (B) a dispersant system and (C) a carboxyl-containing crosslinked copolymer, and optionally (D) at least one formulation additive, are useful for the corresponding UV-active finishing of textile material, in particular textile material which can be dyed with disperse dyes or optically brightened with disperse brighteners, especially for treating cheeses with liquors comprising disperse dyes and UV absorbers or liquors comprising disperse brighteners, without fear of troublesome pressure build-up or dye or brightener deposits.
Abstract:
Regenerated cellulose fiber with a reduced tendency to fibrillation can be prepared by treating never-dried fiber with an aqueous solution or dispersion of a polymer having a plurality of cationic ionisable groups. Suitable polymers include those carrying imidazoline and azetidinium groups. The fiber may additionally be treated with an aqueous emulsion of an emulsifiable polymer.
Abstract:
A NOVEL METHOD OF MANUFACTURING A PAPERMAKING SCREEN CLOTH HAVING A HYDROPHILIC COATING IS DESCRIBED. THE METHOD CONSISTS OF APPLYING TO THE SURFACE OF THE WARPS AND WEFTS OF THE SCREEN CLOTH A SOLUTION OF AT LEAST ONE WATER SOLUBLE ORGANIC COMPOUND CONTAINING AT LEAST TWO HYDROPHILIC GROUPS, AT LEAST ONE OF THE HYDROPHILIC GROUPS CONTAINING AN ACTIVE HYDROGEN ATOM, AND A CONDENSING AGENT CAPABLE OF REACTING WITH THE ACTIVE HYDROGEN OF THE HYDROPHILIC GROUPS, WHEREBY THE CONDENSING AGENT REACTS WITH THE HYDROPHILIC GROUPS AND PART OF THE HYDROPHILIC GROUPS REMAINS UNREACTED AND FORMS A HYDROPHILIC FILM ON THE SURFACE OF THE SCREEN CLOTH.