摘要:
The invention provides a method for the recovery of a metal-containing product (MProd) comprising: providing a composite material comprising a matrix of oxidised reductant (Ro), a product metal (MP) dispersed in the matrix of oxidised reductant (Ro), and one or more metal compounds (MPCR) of the product metal (MP) in one or more oxidation states dispersed in the matrix of oxidised reductant (Ro); and treating the composite material to at least partially remove the one or more metal compounds (MPCR) from the matrix of oxidised reductant (Ro) to form the metal-containing product (MProd).
摘要:
A method of producing a composite material comprising: supplying a metal compound (MPC) of a product metal (MP) and a reductant (R) capable of reducing the metal compound (MPC) of the product metal (MP) to a reactor; forming a composite material comprising a matrix of oxidised reductant (R0) of the reductant (R), the product metal (MP) dispersed in the matrix of oxidised reductant (R0), and at least one of (i) one or more metal compounds (MPCR) of the metal compound (MPC) in one or more oxidation states and (ii) the reductant (R); and recovering the composite material from the reactor, wherein the metal compound (MPC) of the product metal (MP) is fed to the reactor such that it is in excess relative to the reductant (R).
摘要:
The present invention relates to a method for treating lithium ion battery scrap containing Li, Ni, Co, Mn, Al, Cu and Fe, the method comprising carrying out a calcination step, a crushing step and a sieving step in this order, and after the steps, the method comprising: a leaching step of leaching the lithium ion battery scrap by adding it to an acidic solution to leave at least a part of Cu as a solid; a Fe/Al removal step comprising allowing a leached solution obtained in the leaching step to pass through a Fe removal process for separating and removing Fe by addition of an oxidizing agent and an Al removal process for separating and removing a part of Al by neutralization in any order; an Al/Mn extraction step of extracting and removing a residue of Al and Mn from a separated solution obtained in the Fe/Al removal step by solvent extraction; a Co recovery step of extracting and back-extracting Co from a first extracted solution obtained in the Al/Mn extraction step by solvent extraction and recovering the Co by electrolytic winning; a Ni recovery step of extracting and back-extracting, by solvent extraction, a part of Ni from a second extracted solution obtained by the solvent extraction in the Co recovery step and recovering the Ni by electrolytic winning; a Li concentration step of extracting and back-extracting, by solvent extraction, a residue of Ni and Li from a third extracted solution obtained by the solvent extraction in the Ni recovery step and repeating the operations of the extracting and the back-extracting to concentrate Li; and a Li recovery step of carbonating Li in a Li concentrated solution obtained in the Li concentration step to recover the Li as lithium carbonate.
摘要:
A process and an apparatus are disclosed for improved recovery of metal from hot and cold dross, wherein a dross-treating furnace is provided with a filling material with good capacity to store heat. This filling material is preheated to a desired temperature by injection of an oxidizing gas to burn non-recoverable metal remaining in the filling material after tapping of the recoverable metal contained in the dross and discharging of the treatment residue. When dross is treated in such furnace, the heat emanating by conduction from the filling material is sufficient to melt and separate the recoverable metal contained in the dross, without addition of an external heat source, such as fuel or gas burners, plasma torches or electric arcs and without use of any salt fluxes. Furthermore, the recovered metal being in the molten state can be fed to the molten metal holding furnace without cooling the melt; in addition, the non-use of fluxing salt for the treatment means that the non-contaminated residue can be used as a cover for the electrolytic cells in the case of aluminum. In the case of zinc dross, the residue is a valuable zinc oxide by-product very low in contaminants.
摘要:
A washing method of red mud that is produced when an alumina-containing ore having a goethite to hematite mass ratio of 60/40 (goethite/hematite) or more in the iron component thereof is heat-treated with an alkaline solution at a temperature of 110° C. to 160° C. to obtain an aluminate liquor, including: mixing the red mud with a diluting fluid to obtain suspension that has an aluminum concentration of 95 g/L or less in terms of Al2O3; adding a flocculant to the suspension, wherein, the flocculant includes a polymer having a repeating unit derived from (meth)acrylic acid or a salt thereof and being substantially free from a repeating unit derived from vinylhydroxamic acid compound or a salt thereof; and settling and separating the red mud so as to wash the red mud.
摘要翻译:当将具有针铁矿质量比为60/40(铁铁/赤铁矿)的铁配合物的铁精矿质量比的含有氧化铝的矿石在铁组分中时,产生的红泥的洗涤方法在碱溶液的温度下进行热处理 110℃至160℃以获得铝酸盐液体,其包括:将红泥与稀释液混合以获得以Al 2 O 3计的铝浓度为95g / L以下的悬浮液; 向悬浮液中添加絮凝剂,其中,絮凝剂包括具有衍生自(甲基)丙烯酸的重复单元或其盐并且基本上不含来自乙烯基异羟肟酸化合物或其盐的重复单元的聚合物; 并沉淀并分离红泥,以洗涤红泥。
摘要:
A washing method of red mud that is produced when an alumina-containing ore having a goethite to hematite mass ratio of 60/40 (goethite/hematite) or more in the iron component thereof is heat-treated with an alkaline solution at a temperature of 110° C. to 160° C. to obtain an aluminate liquor, including: mixing the red mud with a diluting fluid to obtain suspension that has an aluminum concentration of 95 g/L or less in terms of Al2O3; adding a flocculant to the suspension, wherein, the flocculant includes a polymer having a repeating unit derived from (meth)acrylic acid or a salt thereof and being substantially free from a repeating unit derived from vinylhydroxamic acid compound or a salt thereof; and settling and separating the red mud so as to wash the red mud.
摘要翻译:当将具有针铁矿质量比为60/40(铁铁/赤铁矿)的铁配合物的铁精矿质量比的含有氧化铝的矿石在铁组分中时,产生的红泥的洗涤方法在碱溶液的温度下进行热处理 110℃至160℃以获得铝酸盐液体,其包括:将红泥与稀释液混合以获得以Al 2 O 3计的铝浓度为95g / L以下的悬浮液; 向悬浮液中添加絮凝剂,其中,絮凝剂包括具有衍生自(甲基)丙烯酸的重复单元或其盐并且基本上不含来自乙烯基异羟肟酸化合物或其盐的重复单元的聚合物; 并沉淀并分离红泥,以洗涤红泥。
摘要:
A method and apparatus for harvesting waste thermal energy from a pyrometallurgical vessel (1) and converting that energy to direct electrical current, the method including deriving and controlling a primary fluid flow (103) from a primary heat exchanger (10) associated with the pyrometallurgical vessel (1), providing a secondary heat exchanger (12) physically displaced from the pyrometallurgical vessel (1) which exchanges heat between the primary fluid flow (103) from the primary heat exchanger (10) and a secondary fluid flow (104). The secondary heat exchanger (12) has at least one thermoelectric or magneto-thermoelectric device having two operationally-opposed sides, the operationally-opposed sides being in thermal communication with the primary and secondary fluid flows (103,104) respectively. A temperature difference is maintained between the two operationally-opposed sides of the thermoelectric or magneto-thermoelectric device and electrical energy is generated from the temperature differential. The pyrometallurgical vessel preferably generates a magnetic field (14) in the region surrounding the pyrometallurgical vessel (1) and the secondary heat exchanger (12) having at least one magneto-thermoelectric device is positioned physically displaced from but within the magnetic field (14) surrounding the pyrometallurgical vessel such that the direction of temperature gradient across the secondary heat exchanger is oriented normally to the maximum principal direction of the magnetic field (14) and electrical energy is generated from the temperature differential and magnetic field via the Nernst effect or magneto-thermoelectric effects.
摘要:
A process and an apparatus are disclosed for improved recovery of metal from hot and cold dross, wherein a dross-treating furnace is provided with a filling material with capacity to store heat. This filling material is preheated to a desired temperature by injection of an oxidizing gas to burn non-recoverable metal remaining in the filling material after tapping of the recoverable metal contained in the dross and discharging of the treatment residue. When dross is treated in such furnace, the heat emanating by conduction from the filling material is sufficient to melt and separate the recoverable metal contained in the dross, without addition of an external heat source, such as fuel or gas burners, plasma torches or electric arcs and without use of any salt fluxes. Furthermore, the recovered metal being in the molten state can be fed to the molten metal holding furnace without cooling the melt.
摘要:
The invention provides a method for the recovery of a metal-containing product (MProd) comprising: providing a composite material comprising a matrix of oxidised reductant (Ro), a product metal (MP) dispersed in the matrix of oxidised reductant (Ro), and one or more metal compounds (MPCR) of the product metal (MP) in one or more oxidation states dispersed in the matrix of oxidised reductant (Ro); and treating the composite material to at least partially remove the one or more metal compounds (MPCR) from the matrix of oxidised reductant (Ro) to form the metal-containing product (MProd).
摘要:
Eco-friendly systems, methods and processes/processing (EFSMP) or an integrated Matrix encompasses stand-alone and/or interconnected modules for completely self-sustained, closed-loop, emission-free processing of multiple source feedstock that can include pretreatment, with poisoning materials isolated during pretreatment being further recycled to provide useful materials such as, for example, separated metals, carbon and fullerenes for production of nano materials, sulfur, water, sulfuric acid, gas, heat and carbon dioxide for energy production, and production of refined petroleum, at a highly-reduced cost over the best state-of-the-art refining methods/systems that meets new emissions standards as well as optimizes production output with new ultra-speed cycle times. By-products from the petroleum refining process which were previously discarded also now are recycled as renewable sources of energy (water, waste oil and rubber/coal derived pyrolyic (pyrolysis) oil, carbon gases and process gases), or recyclable resources, such as metals and precious metals, oxides, minerals, etc., can be obtained.