Abstract:
A method for improving wear control, while maintaining or improving energy efficiency, in an engine or other mechanical component lubricated with a lubricating oil, by using as the lubricating oil a formulated oil. The formulated oil includes at least one lubricating oil base stock having one or more liquid crystals represented by the formula: R1-(A)m-Y—(B)n—R2 wherein R1 and R2 are the same or different and are a substituted or unsubstituted, hydrocarbon, alkoxy or alkylthio group having from 2 to 24 carbon atoms; A and B are the same or different and are a cycloaliphatic group or aromatic group, provided at least one of A and B is an aromatic group; Y is a covalent bond, —CH2-CH2-, —CH═CH—, —OCOO—, —CO—, —CSO—, —CSS—, —CS—, —O—, —S—, —SO—, —SO2-, —CH2O—, —OCH2O—, —NO—, —ONO2, or —C≡N; and m and n are independently 0, 1, 2 or 3. The lubricating oil base stock has a kinematic viscosity of 2 cSt to 200 cSt at 40° C., and 1 cSt to 25 cSt at 100° C. Also, this disclosure relates to low traction/energy efficient liquid crystal base stocks containing liquid crystals.
Abstract:
Disclosed are the use of fluorine substituted olefins, including tetra- and penta-fluoropropenes, in a variety of applications, including in methods of depositing catalyst on a solid support, methods of sterilizing articles, cleaning methods and compositions, methods of applying medicaments, fire extinguishing/suppression compositions and methods, flavor formulations, fragrance formulations and inflating agents.
Abstract:
A composition for a heat cycle system contains a working medium for heat cycle containing 1-chloro-2,3,3,3-tetrafluoropropene and a refrigerant oil.
Abstract:
A low-friction coating includes: an aliphatic hydrocarbon group showing a peak in a region of 2,900 cm−1 to 3000 cm−1 in an infrared absorption spectrum; a carbonyl group showing a peak in a region of 1,650 cm−1 to 1,800 cm−1 in an infrared absorption spectrum; an aromatic component (C7H7+) showing a peak at mass 91.1 in a positive ion spectrum obtained by TOF-SIMS; and a condensed ring based component (C9H7+) showing a peak at mass 115.2 in the positive ion spectrum obtained by TOF-SIMS.
Abstract:
The present invention discloses an oil including at least one alkyl aromatic compound wherein the oil viscosity is lower than 3.0 cSt at the temperature of 40° C. The oil of the present invention shows a lower viscosity variation as a function of the temperature, what contributes to reduce the cooling system equipment wear and increase the equipment operation lifetime, for example, the operation lifetime of the cooling compressors. It also an object of the present invention a composition including said oil in combination with at least one fluid of the hydrocarbon (HC) type and its uses in mechanical equipments and mechanical equipments made with said oil and/or composition.
Abstract:
This invention is directed to a new process for making an alkylaromatic compound. In an embodiment of this invention, the process is directed to selective synthesizing an alkylaromatic compound comprising a high amount of dialkylate product. In general, this process involves contacting at least one alkylatable aromatic compound with an alkylating agent and a catalyst under suitable reaction conditions such that the resulting reactor effluent prior to any stripping step may be characterized by a dialkylate product content of at least 44 wt % and a trialkylate and higher polyalkylate product content of no more than 20 wt %. The alkylaromatic compounds produced have excellent thermal and oxidative stabilities, good additive solvency, and improved seal compatibility while maintaining good VI and low temperature properties. They are useful as lubricant basestocks and lubricant additives.
Abstract:
Provided are lubricating engine oils including a lubricating oil base stock as a major component and an alkylated aromatic base stock as a minor component. One or more of engine wear and corrosion resistance are improved as compared to engine wear and corrosion resistance achieved using a lubricating oil containing a minor component other than the alkylated aromatic base stock, e.g., an ester having a D5293 viscosity of less than 10,000 cP at −35° C. In an engine lubricated with the lubricating oil, one or more of engine wear and corrosion resistance are improved as compared to engine wear and corrosion resistance achieved using a lubricating oil containing a minor component other than the alkylated aromatic base stock, e.g., an ester having a D5293 viscosity of less than 10,000 cP at −35° C. This improvement in engine wear and corrosion control means that engine oils can be formulated with very high saturate content base stocks such as PAOs or GTL stock while providing improved engine durability.
Abstract:
The present invention relates to compositions for use in refrigeration, air-conditioning, and heat pump systems wherein the composition comprises a tetrafluoropropene and at least one other component. The compositions of the present invention are useful in processes for producing cooling or heat, as heat transfer fluids, foam blowing agents, aerosol propellants, and fire suppression and fire extinguishing agents.
Abstract:
The present disclosure relates to lubricant oil compositions formed from base stock oils to optimize internal combustion engine performance. Base stock oils are identified that have selected cetane number characteristics and relatively reduced reactivity to improve their associated combustion characteristics and reduce engine knock without the need to modify the engine fuel or engine parameters such as compression ratio and/or ignition timing. The base stocks may specifically include esters of dicarboxylic acids, esters of trimellitic anhydride and/or alklyated naphthalene compounds.
Abstract:
A lubricant oil for a refrigeration machine, and refrigeration machine, said refrigeration machine being of the type that operates with a refrigerant consisting of at least one component of the HC (hydrocarbon) group, the lubricant oil consisting of an alkylbenzene oil containing at least 80% by weight of alkylbenzene having a molecular weight of 120-288 and having a viscosity between about 3.0 and 7.0 cSt at a temperature of 40° C. and the lubricant composition consisting of said alkylbenzene oil and until about 8% by weight of one or more additives selected from a group consisting of improvers of oxidation resistance and thermal stability, corrosion inhibitors, metal inactivators, lubricity additives, viscosity index improvers, reducers of fluidity and flocculation point, detergents, dispersants, antifoaming agents, antiwear agents and extreme pressure resistant additives.