Abstract:
Provided herein is a resin-metal complex and a manufacturing method thereof, the resin-metal complex being a synthetic resin comprising an olefin resin, filler, and coupling agent combined with a metallic material, the filler being at least one of an organic filler and inorganic filler, the inorganic filler being wood flour, wood pellet, wood fiber, or paper powder, and the inorganic filler being talc, calcium carbonate, wollastonite, or kaolinite.
Abstract:
A hot applied, non-crosslinking, non-butyl, sealant. These sealants are composed of olefin polymers, styrenic block copolymers, an ethylene vinyl acetate copolymer, tackifying resins, plasticizers, and preferably inorganic fillers, and organosilane adhesion promoters. Optionally, the sealant may include UV absorbers, antioxidants, pigments, and the like. The sealants are suitable for use as edge sealants for insulated glass (IG) window units.
Abstract:
A tire can deliver improved on-ice performance with a reduced rolling resistance. The tire includes a foam rubber layer in a tread that comes into contact with a road surface, wherein a foaming ratio of the foam rubber layer is in a range from 3% to 50%, a rubber composition forming the foam rubber layer includes ethylene-vinylalcohol copolymer fiber coated with a resin having affinity for a rubber component, and the rubber composition forming the foam rubber layer includes 5 to 30 parts by mass at least one type of inorganic compound powder with respect to 100 parts by mass the rubber component, the inorganic compound powder having an average particle diameter greater than or equal to 10 μm and expressed by the following general formula (I). M.xSiO2.yH2O (I)
Abstract:
The instant invention is a coating composition, a coated article, and method forming such coated articles. The coating composition comprises (a) a dispersion; and (b) a solution acrylic polymer, an emulsion polymer latex, or combinations thereof. The dispersion comprises at least one or more base polymers selected from the group consisting of an ethylene-based thermoplastic polymer, a propylene-based thermoplastic polymer, and mixtures thereof; at least one or more stabilizing agents; and a fluid medium. A coated article comprises a substrate comprising cellulosic materials; and at least one or more coating layers present on at least one or more surfaces of the substrate. The one or more coating layers may be derived from a coating composition comprising (a) a dispersion; and (b) a solution acrylic polymer, an emulsion polymer latex, or combinations thereof. The dispersion comprises at least one or more base polymers selected from the group consisting of an ethylene-based thermoplastic polymer, a propylene-based thermoplastic polymer, and mixtures thereof; at least one or more stabilizing agents; and a fluid medium. The method of forming a coated article comprises the steps of (1) selecting a substrate comprising cellulosic materials; (2) selecting a coating composition comprising (a) a dispersion comprising at least one or more base polymers selected from the group consisting of an ethylene-based thermoplastic polymer, a propylene-based thermoplastic polymer, and mixtures thereof; at least one or more stabilizing agents; and a fluid medium; and (b) a solution acrylic polymer, an emulsion polymer latex, or combinations thereof; (3) applying said coating composition to at least one or more surfaces of said substrate; (4) removing a at least a portion of the water; and (5) thereby forming said coated article.
Abstract:
A hot applied, non-crosslinking, non-butyl, sealant. These sealants are composed of olefin polymers, styrenic block copolymers, an ethylene vinyl acetate copolymer, tackifying resins, plasticizers, and preferably inorganic fillers, and organosilane adhesion promoters. Optionally, the sealant may include UV absorbers, antioxidants, pigments, and the like. The sealants are suitable for use as edge sealants for insulated glass (IG) window units.
Abstract:
A solid lubricating coating formed on a contact surface of a threaded joint for pipes has a matrix of a lubricating oil-containing polymer. The lubricating oil-containing polymer has either a uniform composition or a gradient composition in which the concentration of lubricating oil decreases towards the contact surface and in which there is substantially no lubricating oil in the vicinity of the contact surface.
Abstract:
Provided are chlorine-free ink and coating compositions that demonstrate improved adherence when applied to untreated flexible plastic film substrates. The provided compositions eliminate the need for a separate step of pre-treating a plastic film before applying an ink or coating composition. Also provided are methods for producing a printed article using the provided ink and coating compositions and methods of adhering chlorine-free inks or coatings that exhibit improved adhesion characteristics to untreated plastic films.
Abstract:
The adhesion between a low surface energy (i.e., nonpolar) material, e.g., a polyolefin such as polyethylene, and a high surface energy (i.e., polar) material, e.g., a polyester, polyurethane, polycarbonate or polylactic acid, is promoted by blending with the nonpolar material typically from 15 to less than 50 wt % of a diol-based thermoplastic polyurethane (d-TPU), e.g., a polydiene diol-based TPU, based on the combined weight of the nonpolar material and the d-TPU. The promoted adhesion allows for the effective painting, printing, over-molding or HF-welding of a nonpolar substrate, e.g., a polyolefin film, with a polar coating, e.g., a paint, ink, etc. Aqueous dispersions can also be made from the blend of nonpolar material and d-TPU.
Abstract:
A coating material includes a first aqueous dispersion (A) and a second aqueous dispersion (B) wherein a dispersoid of the first aqueous dispersion (A) has an average particle diameter of 1 to 20 μm and a dispersoid of the second aqueous dispersion (B) has an average particle diameter 1/100 to ⅕ of that of the dispersoid of the first aqueous dispersion (A), and the mass ratio (the aqueous dispersion (A)/the aqueous dispersion (B)) of the dispersoid of the first aqueous dispersion (A) to the dispersoid of the second aqueous dispersion (B) is 2/1 to 100/1. Also provided is a container, which is coated with the coating material and has excellent properties.
Abstract:
Poly(trimethylene terephthalate) compositions, and articles made therefrom, having improved flame retardancy are provided. The compositions can be used to make carpets that are suitable for installation where flame retardancy is desired.