摘要:
Polymer particles excellent in uniform dispersibility and the use thereof are provided. The polymer particles contain a surfactant, and have a coefficient of variation in the volume-based particle diameter distribution in the range from not less than 13.0% to not more than 25.0%. When 15.0 g of water is added to 5.0 g of the polymer particles so as to disperse the polymer particles in the water by performing a dispersion treatment for 60 minutes using an ultrasonic cleaner, and furthermore when an obtained dispersion liquid is put into a centrifuge tube with an inside diameter of 24 mm so as to be centrifuged, by a centrifugal separator, under conditions that K factor is 6943 and a rotating time is 30 minutes to recover a supernatant, a concentration of non-volatile components in the obtained supernatant is less than 3.5 wt. %.
摘要:
The present disclosure concerns a bulk polymerization process for the preparation of high heat performance copolymer resins with a reduced amount of oligomer byproduct. The method can comprise isolating oligomer byproduct and introducing the oligomer byproduct into the reactant mixture for the bulk polymerization process.
摘要:
A multi-modal polymer blend for use in an adhesive composition comprising at least two compositionally different propylene-based polymers. The multi-modal polymer blend has a Mw of about 10,000 g/mol to about 150,000 g/mol. When subjected to Temperature Rising Elution Fractionation, the multi-modal polymer blend exhibits a first fraction that is soluble at −15° C. in a hydrocarbon solvent, such as xylene or ortho-dichlorobenzene, the first fraction having an isotactic (mm) triad tacticity of about 70 mol % to about 90 mol %; and a second fraction that is insoluble or less soluble than the first fraction at −15° C. in the hydrocarbon solvent, the second fraction having an isotactic (mm) triad tacticity of about 85 mol % to about 98 mol %.
摘要:
The disclosure includes a polymerization process and an olefin polymerization system. A polymerization product is produced, a vapor phase is recovered from the polymerization product, the vapor phase is fractionated in a first column to yield a fraction stream, and the fraction stream is fractionated in a second column. A first stream of the second column, which comprises a diluent, can be recycled to a first polymerization reactor. A second stream of the second column, which comprises olefin monomer, diluent, and hydrogen, can be recycled to a second polymerization reactor. Comonomer may be recycled from the first column to the first polymerization reactor, the second polymerization reactor, or both.
摘要:
A diesel fuel additive composition, a fuel containing the fuel additive, a method for improving diesel engine performance using the additive and a method for making the additive for diesel engines having a high pressure fuel injection system. The fuel additive has a number average molecular weight (Mn) of from about 500 to about 10,000 and is selected from a hydrocarbyl-substituted succinic acid or anhydride or derivative thereof and a hydrocarbyl-substituted Mannich base. The additive has a molecular weight distribution such that less than about 25 wt. % of the additive has a molecular weight of 400 or less as measured by gel permeation chromatography (GPC) based on a polystyrene calibration curve.
摘要:
The present invention provides a method for preparing poly(allylamine) hydrochloride, sevelamer hydrochloride, sevelamer carbonate and colesevelam hydrochloride. The present invention also relates to a process for preparing oly(allylamine) hydrochloride, sevelamer hydrochloride, sevelamer carbonate and colesevelam hydrochloride with low allylamine content and high specific gravity.
摘要:
The present invention provides a fluoropolymer capable of giving fluorine-containing molded materials and laminates excellent in moldability, productivity, interlaminar bonding and stress cracking resistance, in particular stress cracking resistance upon contacting with various liquid chemicals, without impairing such characteristics intrinsic in fluororesins as chemical resistance, solvent resistance, weathering resistance, antifouling properties, liquid chemical impermeability and nonstickiness. The present invention provides a fluoropolymer which is an oligomer-containing or oligomer-free fluoropolymer, wherein said oligomer has a molecular weight not higher than 10,000 and amounts to not more than 0.05% by mass relative to the fluoropolymer.
摘要:
A fractionation system for a polymerization reactor includes a membrane separation system designed to separate light components, such as unreacted monomer and inerts, from diluent. The membrane separation system may employ one or more membrane modules designed to separate hydrocarbons based on size, solubility, or combinations thereof. The fractionation system also may include a heavies fractionation column designed to separate heavy components, such as unreacted comonomer and oligomers, from the diluent.
摘要:
The disclosure provides, in various embodiments, a method for fractionating a polyalkylene, and the fractionated polyalkylene produced thereby. The method includes, for example, separating, from a starting polyalkylene, a first portion of a polyalkylene having a Mw less than the Mw of the starting polyalkylene. Also included are carriers, phase change inks and toners comprising the fractionated polyalkylene, such as the first portion of a polyalkylene.
摘要:
Polymer fractions such as polyethylene fractions can be produced that have a PDI less than about 2.3 and a Mw greater than about 1,000,000 g/mol, 3,000,000 g/mol, or 6,000,000 g/mol. Such polyethylene fractions are separated from a UHMWPE parent polymer by first dissolving the parent polymer in a relatively good solvent. The conditions employed for such dissolution are selected to reduce the degradation of the parent polymer. The resulting parent solution is transported into a fractionation column in which a support is disposed. The fractionation column is thereafter operated at conditions effective to form a precipitate on the support comprising the desired polyethylene fraction. The polyethylene fraction may then be recovered from the fractionation column by repeatedly displacing a solvent/non-solvent mixture into the column to dissolve the polyethylene fraction. The relative concentrations of the solvent and the non-solvent are based on a solvent gradient profile of the polyethylene parent polymer.