摘要:
A copolymer including ethylene units and units of one or more C3-10 alpha-olefins. The copolymer has a number average molecular weight of less than 5,000 g/mol, as measured by GPC. The ethylene content of the copolymer is less than 80 mol %. At least 70% of molecules of the copolymer have an unsaturated group, and at least 70% of said unsaturated groups are located in a terminal vinylidene group or a tri-substituted isomer of a terminal vinylidene group. The copolymer has a crossover temperature of −20° C. or lower and/or a certain ethylene run length. Also disclosed are a method for making the copolymer and polyolefins plasticized with 1-40 wt % of the copolymer.
摘要:
A magnesium alkoxide catalyst support and the preparation method and use thereof are provided. The method for preparing the magnesium alkoxide catalyst support comprises the following steps: mixing a metallic magnesium, a monohydric alcohol, a halogenating agent and a surfactant at 0° C. to 90° C. under an inert gas atmosphere, and then washing the resultant with an inert solvent to obtain the magnesium alkoxide catalyst support. A magnesium alkoxide catalyst support obtained by the above method is also provided, which can be used to catalyze olefin polymerization. The magnesium alkoxide catalyst support obtained by the above method according to the invention has excellent particle morphology and controllable size, and is suitable for preparing a catalyst for olefin polymerization.
摘要:
The polypropylene copolymer according to the present invention has a low melting point and also is excellent in the low temperature heat sealing effect, transparency and strength, and the film prepared therefrom can be effectively used as a sealing layer of the non-stretched polypropylene-based film.
摘要:
The present embodiments provide a system and method for separation within a polymer production process. Specifically, a flashline heater configured according to present embodiments may provide more time than is required for complete vaporization of liquid hydrocarbons that are not entrained within a polymer fluff produced within a polymerization reactor. Such extra time may allow for liquid hydrocarbons that are entrained within the polymer fluff to be vaporized.
摘要:
A catalyst composition for use as precursor for Ziegler-Natta catalyst system, said catalyst composition comprising a combination of magnesium moiety, titanium moiety and an internal donor containing at least one 1,2-phenylenedioate compound of structure (A). Also, the present invention provides a process for preparing the aforesaid catalyst composition. Further, the present invention provides a Ziegler-Natta catalyst system incorporating the aforesaid catalyst composition and a method for polymerizing and/or copolymerizing olefins using the Ziegler-Natta catalyst system.
摘要:
An asphalt additive comprising a primary rheology modifying component and a secondary rheology modifying component, and asphalt compositions and products having such additive incorporated therein. The primary rheology modifying component is generally a polymer, and the secondary rheology modifying component may comprise a petroleum micro-wax.
摘要:
Disclosed are an apparatus and a method for removing halogens generated during the preparation of polybutene, which are capable of improving the utilization of polybutene and light polymers by removing halogen components contained in the polybutene and the light polymers. The method for removing halogens generated during the preparation of polybutene comprises the steps of: preparing a reaction product by supplying a catalyst and a reaction raw material to a reactor and polymerizing; removing a catalyst component from the reaction product and neutralizing; separating the reaction product into an organic compound and impurities comprising the catalyst component; heating the organic compound to distill an unreacted material; and removing a halogen component in a remaining polymerization mixture after the distillation using a halogen removing catalyst, or removing a halogen component in polybutene and light polymers obtained from the polymerization mixture using the halogen removing catalyst.
摘要:
The present invention relates to a microporous polyethylene film for use as battery separator. The microporous polyethylene film according to the present invention is characterized by having a film thickness of 5-40 μm, a porosity of 35-55%, a permeability from 2.5×10−5 to 10.0 10−5 Darcy, a puncture strength of at least 0.10 N/μm at 90° C., a puncture angle of at least 30° at 90° C., and a permeability from 2.0 10−5 to 8.0 10−5 Darcy after shrinking freely at 120° C. for 1 hour. The microporous polyethylene film in accordance with the present invention has very superior puncture strength and thermal stability at high temperature and takes place of less decrease of permeability due to low thermal shrinkage at high temperature, as well as superior permeability. Therefore, it can be usefully applied in a high-capacity, high-power battery to improve thermal stability and long-term stability of the battery.
摘要:
Multi-layer elastic air quenched blown film structures are disclosed which include: a first layer incorporating a propylene-based copolymer and optionally, a linear low density polyethylene or a low density polyethylene; and at least one second layer incorporating a linear low density polyethylene copolymer and optionally, a propylene-based copolymer and/or a low density polyethylene. Alternatively the second layer of the film structures may contain an in-reactor blend of a substantially linear polyethylene (or a homogeneously branched linear polyethylene) and a linear low density polyethylene. The film structures show an excellent balance of Dart impact, Elmendorf tear (in both the machine direction and cross direction), elastic holding force and elastic recovery.
摘要:
The invention concerns catalysts comprising (i) a cladded catalyst support comprising (a) a core which comprises alumina particles and (b) about 1 to about 40 weight percent silica cladding, based on the weight of the cladded catalyst support, on the surface of the core; the catalyst support having a BET surface area of greater than 20 m2/g and a porosity of at least about 0.2 cc/g; and (ii) 0.1 to 10 weight percent, based on the weight of the catalyst, of catalytically active transition metal on the surface of the cladded catalyst support; wherein the catalyst support has a normalized sulfur uptake (NSU) of up to 25 ?g/m2. The invention also concerns the production and use of such catalysts.