Abstract:
A method of forming a ceramic matrix composite includes three-dimensionally weaving a fibrous preform, the preform including a plurality of warp tows, a plurality of weft tows, and a plurality of z-fibers passing orthogonally between the plurality of warp and the plurality of weft tows. The method further includes debulking the preform, decomposing the plurality of z-fibers to form a respective plurality of z-channels in the preform, and densifying the preform with a ceramic matrix.
Abstract:
A device includes a ceramic substrate formed of a first material, a polishable layer formed of a different material, and an interface between the ceramic substrate and the polishable layer. The interface is formed by infiltration of molten elemental silicon, and bonds the ceramic substrate and the polishable layer together. The device may include an optical device such as, for example, mirror or a beam dump. A method of making a device from a green-state structure and a polishable layer is also disclosed. The method includes infiltrating elemental silicon into and through the green-state structure, to form a substrate of a multi-phase ceramic material from the green-state structure, and to reactively bond the substrate and the polishable layer together.
Abstract:
A sintered polycrystalline cubic boron nitride (PCBN) body includes between 40 and 85 vol % of cubic boron nitride (cBN) particles and between 15 and 60 vol % of a binder phase. The binder phase has at least one metal oxide and at least one metal nitride. The metal oxide includes between 20 and 100 vol % of zirconium oxide (ZrO2) and up to 80 vol % of alumina (Al2O3) counted as a volume percentage of the total metal oxide content of the binder phase. The metal nitride includes aluminium nitride (AlN) and at least one metal nitride selected from the group consisting of vanadium nitride (VN), niobium nitride (NbN) and hafnium nitride (HfN). The content of the selected metal nitride selected is at least 10 vol % of the total binder phase, and the content of the metal oxide is at least 10 vol % of the total binder phase.
Abstract:
A method of forming a composite component is provided. The method includes locating a fibrous preform, providing a slurry, mixing the slurry with sacrificial fibers, injecting the slurry into the fibrous preform, heating the fibrous preform, forming channels in the fibrous preform, and densifying the fibrous preform. The sacrificial fibers are suspended in the fibrous preform along an injection pathway such that heating the sacrificial fibers forms the channels along the injection pathway as the sacrificial fibers are burned away.
Abstract:
Various embodiments of the present invention are directed towards a system and method relating to depositing vapor in a sample. For example, a device includes a vapor source chamber configured to contain a vapor source material to generate vapor. An activation chamber is configured to contain a sample. The activation chamber is in fluid communication with the vapor source chamber to receive the vapor. A permeable separator divides the vapor source chamber and the activation chamber, and isolates the sample in the activation chamber while allowing vapor to pass between the vapor source chamber and the activation chamber. The device is sealable and configured to apply vacuum to the vapor and sample, to cause deposition of the vapor into the pumice stone samples.
Abstract:
A method for processing a component is provided and includes masking a first portion of the component with a maskant. The maskant includes a slurry having a plurality of particles in a fluid carrier. The plurality of particles comprises at least one of silicon, carbon, one or more rare earth disilicates, monosilicates or oxides, and combinations thereof. The method includes depositing a silicon-based coating on a second portion of the component via a chemical vapor deposition process and removing the maskant and any overlying silicon-based coating from the first portion of the component.
Abstract:
A vertical chemical vapor deposition (CVD) reactor and a method for synthesizing metal oxide impregnated carbon nanotubes. The CVD reactor includes a preheating zone portion and a reaction zone portion, and preferably an additional cooling zone portion and a product collector. The method includes (a) subjecting a liquid reactant solution comprising an organic solvent, a metallocene, and a metal alkoxide to atomization in the presence of a gas flow comprising a carrier gas and a support gas to form an atomized mixture, and (b) heating the atomized mixture to a temperature of 200° C.-1400° C., wherein the heating forms a metal oxide and at least one carbon source compound, wherein the metallocene catalyzes the formation of carbon nanotubes from the at least one carbon source compound and the metal oxide is incorporated into or on a surface of the carbon nanotubes to form the metal oxide impregnated carbon nanotubes.
Abstract:
A carbon fiber preform that includes a plurality of fibrous layers stacked together and a plurality of sacrificial fibers that bind the plurality of fibrous layers together, where at least one fibrous layer of the plurality of fibrous layers includes a plurality of carbon fibers or carbon fiber precursor fibers.
Abstract:
A process for conducting vapor phase deposition is disclosed. The process separates a series of reactions through a sequence of reaction reservoirs. The reactor includes a reactive precursor reservoir beneath a powder reservoir separated by valve means. A reactive precursor is charged into the reactive precursor reservoir and a powder is charged into the powder reservoir. The pressures are adjusted so that the pressure in the reactive precursor reservoir is higher than that of the powder reservoir. The valve means is opened, and the vapor phase reactant fluidized the powder and coats its surface. The powder falls into the reactive precursor reservoir. The apparatus permits vapor phase deposition processes to be performed semi-continuously.
Abstract:
A method is disclosed for coating, by means of a chemical vapor deposition (CVD) technique, a part with a coating (PAO) for protecting against oxidation. The method enables the preparation of a refractory coating for protecting against oxidation, having a three-dimensional microstructure, which ensures the protection against oxidation at a high temperature, generally at a temperature above 1200° C., for materials that are sensitive to oxidation, such as composite materials, and in particular carbon/carbon composite materials.