Abstract:
A method of making an Al—B4C composite with Mg addition comprising providing a first mixture of B4C, Al and Mg powder, producing a powder mixture, adding Mg to the powder mixture, forming pellets, creating a composite, annealing the composite, and forming an Al—Mg—B4C composite. An Al—B4C composite with Mg addition comprising Al, Mg comprising 4 wt. %, and B4C comprising 8 wt. %. An Al—B4C composite with Mg addition made from the steps comprising providing a first mixture of B4C, Al and Mg powder, producing a powder mixture, adding Mg to the powder mixture, forming pellets, creating a composite, annealing the composite, and forming an Al—Mg—B4C composite.
Abstract:
The present invention relates to a method for the production of a photocurable formulation (F) for the use in an additive manufacturing process. In this method a ceramic dispersion (CD) comprising at least one ceramic material, at least one first acrylate and at least one dispersant is mixed with a solution (S) which comprises at least one second acrylate and at least one photoinitiator to obtain the photocurable formulation (F). The present invention furthermore relates to the photocurable formulation (F) obtainable by the inventive method and to a method for the production of a molding in an additive manufacturing process by curing the photocurable formulation (F). Moreover, the present invention relates to the use of the photocurable formulation (F) in an additive manufacturing process.
Abstract:
Provided in one embodiment is a method of making, comprising: applying a hydrodynamic cavitation process to a raw material comprising particles comprising a metal-containing material or a carbon containing material of a first size to produce a slurry having particles comprising the metal-containing material or the carbon-containing material of a second size, smaller than the first size; and tape casting the slurry to form a green tape. Apparatuses employed to apply the method and the exemplary compositions made in accordance with the method are also provided.
Abstract:
A castable refractory composition may include from 5% to 95% by weight of alumina, aluminosilicate, or mixtures thereof; up to 70% by weight silicon carbide; up to 10% by weight carbon; from 0.1% to 5% by weight alkaline earth metal oxide and/or hydroxide; and from 0.1% to 5% by weight of silica having a surface area of at least about 10 m2/g. The refractory composition may further include no more than 0.5% by weight of cementitious binder, and the refractory composition may not release a significant amount of hydrogen gas upon addition of water. The refractory composition may set on addition of water. An installable refractory lining may be formed using the composition and a method including at least one of casting, self-flowing, wet shotcreeting, rodding, cast-vibrating, spraying, conventional dry gunning, or high density gunning the castable refractory composition, and setting and drying the composition.
Abstract:
According to embodiments, a batch mixture includes inorganic components, a non-polar carbon chain lubricant, and an organic surfactant having a polar head. The non-polar carbon chain lubricant and the organic surfactant are present in concentrations satisfying the relationship: B(C1(d+d0)+C2(f+f0))=SC, where: d0+d is an amount of non-polar carbon chain lubricant in percent by weight of the inorganic components, by super addition; f0+f is an amount of organic surfactant in percent by weight of the inorganic components, by super addition; B is a scaling factor; C1 is a scaling factor of the concentration of the non-polar carbon chain lubricant; and C2 is a scaling factor of the concentration of the organic surfactant. Embodiments provide that 3.6≦SC≦14.
Abstract:
Methods of forming a polycrystalline table may involve disposing a plurality of particles comprising a superabrasive material, a substrate comprising a hard material, and a catalyst material in a mold. The plurality of particles may be partially sintered in the presence of the catalyst material to form a brown polycrystalline table having a first permeability attached to an end of the substrate. The substrate may be removed from the brown polycrystalline table and catalyst material may be removed from the brown polycrystalline table. The brown polycrystalline table may then be fully sintered to form a polycrystalline table having a reduced, second permeability. Intermediate structures formed during a process of attaching a polycrystalline table to a substrate may include a substantially fully leached brown polycrystalline table. The substantially fully leached brown polycrystalline table may include a plurality of interbonded grains of a superabrasive material.
Abstract:
Methods of forming a polycrystalline table may involve disposing a plurality of particles comprising a superabrasive material, a substrate comprising a hard material, and a catalyst material in a mold. The plurality of particles may be partially sintered in the presence of the catalyst material to form a brown polycrystalline table having a first permeability attached to an end of the substrate. The substrate may be removed from the brown polycrystalline table and catalyst material may be removed from the brown polycrystalline table. The brown polycrystalline table may then be fully sintered to form a polycrystalline table having a reduced, second permeability. Intermediate structures formed during a process of attaching a polycrystalline table to a substrate may include a substantially fully leached brown polycrystalline table. The substantially fully leached brown polycrystalline table may include a plurality of interbonded grains of a superabrasive material.
Abstract:
Processes for manufacturing porous ceramic honeycomb articles are disclosed. The processes include mixing a batch of inorganic components with processing aids to form a plasticized batch. The batch of inorganic components include talc having dpt50≦10 μm, a silica-forming source having dps50≦20 μm, an alumina-forming source having a median particle diameter dpa50 of less than or equal to 10.0 μm, and a pore former having dpp50≦20 μm. The plasticized batch is formed into a green honeycomb article and fired under conditions effective to form a porous ceramic honeycomb article comprising a cordierite crystal phase and having a microcrack parameter (Nb3) of from about 0.05 to about 0.25. After firing, the green honeycomb article the porous ceramic honeycomb article is exposed to a microcracking condition, which increases the microcrack parameter (Nb3) by at least 20%.
Abstract:
A low-water-content castable composition produces cast products with an increased modulus of rupture, an increased cold crushing strength, and decreased porosity. The composition employs closed fractions of constituent particles with specified populations and specified gaps in the particle size distribution to produce these properties. The composition is suitable for refractory applications.
Abstract:
An electrolyte sheet for solid oxide fuel batteries with mechanical strength characteristics is proposed. These characteristics may include a high and stable average value of strength, Weibull coefficient, and a high adhesion to an electrode formed on a surface thereof and hence inhibits the electrode from interfacial separation from the electrolyte sheet. The electrolyte sheet for solid oxide fuel batteries is characterized by having a plurality of concaves and/or convexes on at least one surface thereof, the concaves and convexes having base faces which are circular or elliptic or are a rounded polygon in which the vertexes have a curved shape with a curvature radius of 0.1 μm or larger and/or the concaves and convexes having a three-dimensional shape which is semispherical or semiellipsoidal or is a polyhedron in which the vertexes and the edges have a curved cross-sectional shape having a curvature radius of 0.1 μm or larger.