摘要:
A varistor composition free of Sb comprising: (a) ZnO; (b) B—Bi—Zn—Pr glass, or B—Bi—Zn—La glass, or a mixture thereof; (c) a cobalt compound, a chromium compound, a nickel compound, a manganese compound, or mixtures thereof; (d) SnO2; and (e) an aluminum compound, a silver compound, or a mixture thereof. By adjusting the ratio between the components, the varistor composition may be made into a multilayer varistor with inner electrodes having a low concentration of noble metals at a sintering temperature less than 1200° C. The multilayer varistor made from the varistor composition has good maximum surge current, good ESD withstand ability, and low fabrication cost.
摘要:
Provided herein are nanofibers and processes of preparing carbonaceous nanofibers. In some embodiments, the nanofibers are high quality, high performance nanofibers, highly coherent nanofibers, highly continuous nanofibers, or the like. In some embodiments, the nanofibers have increased coherence, increased length, few voids and/or defects, and/or other advantageous characteristics. In some instances, the nanofibers are produced by electrospinning a fluid stock having a high loading of nanofiber precursor in the fluid stock. In some instances, the fluid stock comprises well mixed and/or uniformly distributed precursor in the fluid stock. In some instances, the fluid stock is converted into a nanofiber comprising few voids, few defects, long or tunable length, and the like.
摘要:
Particular aspects of the present disclosure provide bio-resorbable and biocompatible compositions for bioengineering, restoring, or regenerating tissue or bone. In one embodiment, a biocompatible composition includes a three-dimensional porous or non-porous scaffold material comprising a calcium phosphate-based ceramic having at least one dopant therein selected from metal ion dopants or metal oxide dopants. The composition is sufficiently biocompatible to provide for a cell or tissue scaffold, and resorbable at a controlled resorption rate for controlled strength loss under body, body fluid or simulated body fluid conditions.
摘要:
Provided herein is a method of manufacturing a nanoscale coated network, which includes providing nanofibers, capable of forming a network in the presence of a liquid vehicle and providing a nanoscale solid substance in the presence of the liquid vehicle. The method may also include forming a network of the nanofibers and the nanoscale solid substance and redistributing at least a portion of the nanoscale solid substance within the network to produce a network of nanofibers coated with the nanoscale solid substance. Also provided herein is a nanoscale coated network with an active material coating that is redistributed to cover and electrochemically isolate the network from materials outside the network.
摘要:
Cold sintering of materials includes using a process of combining at least one inorganic compound, e.g., ceramic, in particle form with a solvent that can partially solubilize the inorganic compound to form a mixture; and applying pressure and a low temperature to the mixture to evaporate the solvent and densify the at least one inorganic compound to form sintered materials.
摘要:
A precious metal clay regeneration solution contains water and a liquid paraffin, in which an amount of the liquid paraffin is more than or equal to 0.12 parts by mass and less than or equal to 60 parts by mass with respect to 100 parts by mass of the water. A method for regenerating precious metal clay includes a step of bringing water and a liquid paraffin into contact with a solidified precious metal clay, in which an amount of the liquid paraffin is more than or equal to 0.12 parts by mass and less than or equal to 60 parts by mass with respect to 100 parts by mass of the water.
摘要:
Provided are a diamond polycrystalline body having a longer life than conventional diamond polycrystalline bodies when it is slid, a method for manufacturing the same, and a tool. In a diamond polycrystalline body, at least one element whose sulfide or chloride has a melting point of less than or equal to 1000° C. is added thereto, and crystal grains have an average grain size of less than or equal to 500 nm. Thereby, wear of diamond can be suppressed, and the diamond polycrystalline body can have a longer life when it is slid.
摘要:
A piezoelectric device is provided with: a piezoelectric ceramic layer that is obtained by firing a piezoelectric ceramic composition which contains a perovskite composition and an Ag component; and a conductor layer that sandwiches the piezoelectric ceramic layer, wherein Ag is segregated in voids in a sintered body of the perovskite composition in the piezoelectric ceramic layer. The piezoelectric ceramic composition preferably contains a perovskite composition which is represented by (Pba.Rex){Zrb.Tic,.(Ni1/3Nb2/3)d.(Zn1/3Nb2/3)e}O3 (wherein Re represents La and/or Nd, and a-e and x satisfy the following conditions 0.95≦a≦1.05, 0≦x≦0.05, 0.35≦b
摘要翻译:压电元件具有:通过烧结含有钙钛矿组合物和Ag成分的压电陶瓷组合物获得的压电陶瓷层; 以及夹着压电陶瓷层的导体层,其中Ag在压电陶瓷层中的钙钛矿组合物的烧结体中的空隙中分离。 压电陶瓷组合物优选含有以(Pba.Rex){Zrb.Tic,(Ni1 / 3Nb2 / 3)d。(Zn1 / 3Nb2 / 3)e} O3(其中Re表示La和/ 或Nd,并且ae和x满足以下条件:0.95≤a≤1.05,0≤x≤0.05,0.35≤b<0.45,0.35≤c≤0.45,0≤d≤0.10,0.07≤e≤0.20和b + c + d + e = 1),0.05〜0.3质量%的Ag成分相对于钙钛矿组成为氧化物。
摘要:
Particular aspects provide bioresorbable and biocompatible compositions for bioengineering, restoring or regenerating tissue or bone, comprising a three-dimensional porous or non-porous scaffold material comprising a calcium phosphate-based ceramic having at least one dopant therein selected from metal ion or ion dopants and metal oxide dopants, wherein the composition is sufficiently biocompatible to provide for a cell or tissue scaffold, and resorbable at a controlled resorption rate for controlled strength loss, depending on dopant composition, under body, body fluid or simulated body fluid conditions. Preferably, the at least one dopant is selected from the group consisting of Zn2+, Mg2+, Si2+, Na+, K+, Sr2+, Cu2+, Fe3+/Fe2+, Ag+, Ti4+, CO32−, F−, MgO, ZnO, NaF, KF, FeO/Fe2O3, SrO, CuO, SiO2, TiO2, Ag2O and CaCO3, present in an amount between 0 and about 10 w %, from about 0.5 to about 5 w %, or from about 1 to about 3 w %, and methods of using same.
摘要:
There are provided a composition for a ceramic electronic component having excellent sinterability and magnetic characteristics (Q), a manufacturing method thereof, and an electronic component using the same. The magnetic material composition for the ceramic electronic component is composed of ferric oxide (Fe2O3) of 47.0 to 49.0 parts by mole, nickel oxide (NiO) of 16.0 to 24.0 parts by mole, zinc oxide (ZnO) of 18.0 to 25.0 parts by mole, and copper oxide (CuO) of 7.0 to 13.0 parts by mole, wherein a portion of ferric oxide may be substituted with boron oxide (B2O3). The ceramic electronic component manufactured by using the magnetic material composition for the ceramic electronic component has an excellent Q.
摘要翻译:提供了具有优异的可烧结性和磁特性(Q)的陶瓷电子部件的组合物,其制造方法和使用该组合物的电子部件。 用于陶瓷电子部件的磁性材料组合物由47.0至49.0份摩尔的氧化铁(Fe 2 O 3),16.0至24.0份摩尔的氧化镍(NiO),18.0至25.0份摩尔的氧化锌(ZnO) ,氧化铜(CuO)为7.0〜13.0份(摩尔),其中一部分氧化铁可以被氧化硼(B 2 O 3)代替。 通过使用陶瓷电子部件用磁性材料组合物制造的陶瓷电子部件具有优异的Q值。