Abstract:
A process for separating components or a fluid mixture using membranes comprising a selective layer made from copolymers of an amorphous per fluorinated dioxolane and a fluorovinyl monomer. The resulting membranes have superior selectivity performance for certain fluid components of interest while maintaining fast permeance compared to membranes prepared using conventional perfluoropolymers, such as Teflon® AF, Hyflon® AD, and Cytop®.
Abstract:
An air separation module includes a plurality of fibers located within a casing. A fiber membrane defines an exterior of each of the plurality of fibers. The fiber membrane also forms an interior passage along a length of each of the plurality of fibers. The fiber membrane is configured to permeate a gas through the fiber membrane. At least one perforated canister is placed between the plurality of fibers. The at least one perforated canister is configured to collect a permeated gas from the plurality of fibers.
Abstract:
A process for separating components of a gas mixture using gas-separation copolymer membranes. These membranes use a selective layer made from copolymers of an amorphous perfluorinated dioxolane and a fluorovinyl monomer. The resulting membranes have superior selectivity performance for gas pairs of interest while maintaining fast gas permeance compared to membranes prepared using conventional perfluoropolymers such as Teflon® AF, Hlyflon® AD, and Cytop®.
Abstract:
Solid membranes comprising an intimate, gas-impervious, multi-phase mixture of an electronically-conductive material and an oxygen ion-conductive material and/or a mixed metal oxide of a perovskite structure are described. Electrochemical reactor components, such as reactor cells, and electrochemical reactors are also described for transporting oxygen from any oxygen-containing gas to any gas or mixture of gases that consume oxygen. The reactor cells generally comprise first and second zones separated by an element having a first surface capable of reducing oxygen to oxygen ions, a second surface capable of reacting oxygen ions with an oxygen-consuming gas, an electron-conductive path between the first and second surfaces and an oxygen ion-conductive path between the first and second surfaces. The element may further comprise (1) a porous substrate, (2) an electron-conductive metal, metal oxide or mixture thereof and/or (3) a catalyst. The reactor cell may further comprise a catalyst in the zone which comprises a passageway from an entrance end to an exit end of the element. Processes described which may be conducted with the disclosed reactor cells and reactors include, for example, the partial oxidation of methane to produce unsaturated compounds or synthesis gas, the partial oxidation of ethanes substitution of aromatic compounds, extraction of oxygen from oxygen-containing gases, including oxidized gases, ammoxidation of methane, etc. The extraction of oxygen from oxidized gases may be used for flue or exhaust gas cleanup.
Abstract:
Solid membranes comprising an intimate, gas-impervious, multi-phase mixture of an electronically-conductive material and an oxygen ion-conductive material and/or a mixed metal oxide of a perovskite structure are described. Electrochemical reactor components, such as reactor cells, and electrochemical reactors are also described. The reactor cells generally comprise first and second zones separated by an element having a first surface capable of reducing oxygen to oxygen ions, a second surface capable of reacting oxygen ions with an oxygen-consuming gas, an electron-conductive path between the first and second surfaces and an oxygen ion-conductive path between the first and second surfaces.
Abstract:
Method for recovering oxygen from a medium containing O.sub.2 using polynitrogenated compounds that have five coordinating functions which are capable of binding a metal atom, particularly a cobalt atom. In the recovery method, oxygen is first absorbed by the metal complex and then desorbed from the complex and recovered in an appropriate vessel.
Abstract:
An electrochemical process for extracting oxygen from an oxygen-containing gas which uses an electrochemical cell having two zones separated by a multi-component membrane made from intimate, gas-impervious, multi-phase mixture of an electronically conductive phase and an oxygen ion-conducting phase. In one zone a gas containing oxygen is passed in contact with the membrane. In the other zone a gas capable of reacting with oxygen is passed in contact with the membrane.
Abstract:
Provided is a porous composite membrane including graphene oxide sheets; nanoparticles bound to a surface of the graphene oxide sheets solely by electrostatic and/or Van der Waals interactions. The present invention also relates to a method of producing the porous composite membrane, a gas separation system including the porous composite membrane, and uses of the porous composite membrane in a process for separating H2 from a gas stream and a process for reducing H2O swelling in a graphene oxide-based membrane.
Abstract:
The present disclosure relates to a cross-linked thermally rearranged polymer membrane and a method for preparing the same. The cross-linked thermally rearranged polymer membrane prepared according to the present disclosure has fluorine atoms distributed in a cross-linked thermally rearranged polymer membrane so as to have a concentration gradient from the surface and is formed into a three-layer structure consisting of a fluorine deposition layer, a transition layer and a thermally rearranged polymer base layer, thereby having remarkably increased selectivity as compared to the existing commercialized gas separation membrane and, particularly, enabling helium to be separated with high purity and recovery rate from a natural gas well, etc. even with a small membrane area, and thus being commercializable.