摘要:
Polycrystalline diamond compacts (“PDCs”) include a polycrystalline diamond (“PCD”) table in which cobalt is alloyed with phosphorous to improve the thermal stability of the PCD table. For example, a PDC includes a substrate and a PCD table including an upper surface spaced from an interfacial surface that is bonded to the substrate. The PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The PCD table further includes an alloy comprising at least one Group VIII metal and phosphorous. The alloy is disposed in at least a portion of the plurality of interstitial regions.
摘要:
A PCD insert comprises a PCD element joined to a cemented carbide substrate at an interface. The PCD element has internal diamond surfaces defining interstices between them. The PCD element comprises a masked or passivated region and an unmasked or unpassivated region, the unmasked or unpassivated region defining a boundary with the substrate, the boundary being the interface. At least some of the internal diamond surfaces of the masked or passivated region contact a mask or passivation medium, and some or all of the interstices of the masked or passivated region and of the unmasked or unpassivated region are at least partially filled with an infiltrant material.
摘要:
Polycrystalline ultra-hard constructions comprise a polycrystalline ultra-hard material body and two or more support members attached to the body by braze material. The support members include a backside support member and a side support member. The side support member is a one- or two-piece construction, and is positioned circumferentially around and extends axially along the body or both the body and the backside support member such that a working surface of the body remains exposed. The support members can be configured to provide a mechanical attachment or interlocking attachment with the body or another support member. The braze materials used in the construction can be different and selected to enhance the attachment and/or reduce the creation of thermal stress within the construction during assembly. The support members can be selected having different thermal expansion characteristics that also operate to reduce the thermal stress during construction assembly.
摘要:
Problem: To provide a formed cutter having high fracture resistance, wear resistance and corrosion resistance although being lightweight, and a formed tool for wood which is configured by attaching a plurality of formed cutters to a rotary holder.Solution: A formed cutter is configured from a base (2a) and a cutting edge portion (2b), the base (2a) and the cutting edge portion (2b) constituting a one-piece plate-shaped body and being formed from cermet having a hard phase and a binding phase. A formed tool for wood is configured by attaching a plurality of formed cutters to a rotary holder.
摘要:
A cutting element includes a multilayer polycrystalline diamond element bonded to a substrate of a less hard material. The polycrystalline diamond element defines a matrix of interstitial volumes. The interstitial volumes of a first region of the diamond layer are adjacent a working surface thereof being substantially free of a catalyzing material. The interstitial volumes of a second region of the diamond layer are remote from the working surface containing the catalyzing material.
摘要:
A method of processing a polycrystalline diamond material is disclosed. According to the method, a metal-solvent catalyst is leached from a polycrystalline diamond material by exposing at least a portion of the polycrystalline diamond material to a leaching composition. The leaching composition includes water, a complexing agent, and hydrofluoric acid.
摘要:
A diamond construction may include a diamond body comprising a plurality of bonded-together diamond crystals forming a matrix phase, and a plurality of interstitial regions disposed between the bonded-together diamond crystals, the diamond body comprising: a first diamond region extending a depth from a surface of the diamond body being substantially free of a catalyst material used to form the diamond body, wherein the first diamond region comprises the matrix phase and in at least a portion of the plurality of interstitial spaces, the first diamond region comprises a metal carbide and an inert metal, wherein the metal carbide is formed as a result of reaction between the diamond crystals in the matrix phase and a carbide-forming metal; and a second diamond region adjacent the first diamond region comprising the matrix phase and a Group VIII metal in the interstitial regions.
摘要:
PCD inserts comprise a PCD body having multiple FG-PCD regions with decreasing diamond content moving from a body outer surface to a metallic substrate. The diamond content changes in gradient fashion by changing metal binder content. A region adjacent the outer surface comprises 5 to 20 percent by weight metal binder, and a region remote from the surface comprises 15 to 40 percent by weight metal binder. One or more transition regions are interposed between the PCD body and substrate. The transition region comprises PCD, binder metal, and a carbide, comprises a metal binder content less than that present in the PCD body region positioned next to it.
摘要:
A front face of a diamond table mounted to a substrate is processed, for example through an acid leach, to remove interstitial catalyst binder and form a thermal channel. A material is then introduced to the front face of the diamond table, the introduced material backfilling the front face of the diamond table to fill interstitial voids left by removal of the catalyst binder in the thermal channel to a desired depth. The material is selected to be less thermally expandable than the catalyst binder and/or more thermally conductive than the catalyst binder and/or having a lower heat capacity than the catalyst binder.
摘要:
A process is presented which produces at least one block of dense material constituted by hard particles dispersed in a binder phase, it being possible for the dense material to be enriched locally with binder phase by imbibition. The process includes bringing at least one imbibition area of a surface of the block, preferably coated with a coating material, into contact with an imbibiting material which locally enriches the block with binder phase. The block in contact with the imbibiting material is then subjected to a suitable thermal cycle constituted by heating, temperature maintenance and cooling. This serves to bring some or all of the imbibiting material and the binder phase of the block into the liquid state in such a manner that the enrichment with binder phase takes place solely through the imbibition area. The block is used in connection with the building of a drill bit or tool.