Abstract:
Provided is a plant for the continuous production of monosilane and tetrachlorosilane by catalytic dismutation of trichlorosilane, wherein the plant contains: a countercurrent reactor having a double wall, a catalyst bed containing a catalyst which is located in the countercurrent reactor, a condenser at the top of the countercurrent reactor, a vaporizer unit at the bottom of the countercurrent reactor, a trichlorosilane feed line for the introduction of trichlorosilane into the countercurrent reactor, a heat exchanger, with the trichlorosilane conveyed by line via the heat exchanger and preheated there by a bottom product from the vaporizer unit and, for this purpose, the bottom product is fed by line via the heat exchanger into the double wall at a level in the lower part of the countercurrent reactor and discharged from the double wall at a level in the upper part of the countercurrent reactor, a condensation unit downstream of the condenser, and a distillation column having an outlet for monosilane.
Abstract:
The present invention relates to a plant and a process for the continuous production of monosilane and tetrachlorosilane by catalytic dismutation of trichlorosilane at an operating temperature and a pressure of from 1 to 50 bar abs. in a plant according to claim 1, in which—trichlorosilane (A) is preheated in a heat exchanger (7), and fed to the 10 countercurrent reactor (1) which is provided with catalyst (3),—product mixture formed in the countercurrent reactor (1) is at least partly condensed by means of the condenser (5) at a temperature in the range from −25 to 50° C. with the condensate flowing back into the countercurrent reactor (1),—the product phase which is not condensed in the condenser (5) is passed to the 15 condensation unit (8) which is operated at a temperature in the range from −40 to −110° C.,—the volatile product phase from the condensation unit (8) is fed to the distillation column (9) which is operated at a temperature in the range from −60 to −170° C. and monosilane (C) is discharged at the top of the distillation column (9), 20—the SiCl4-containing bottoms from the countercurrent reactor (1) are brought to a temperature in the range from 60 to 110° C. in the vaporizer unit (6) and—bottom product from the vaporizer (6) is conveyed via a heat exchanger (7) into the double wall (2) of the countercurrent reactor (1) and the SiCl4-containing product stream (B) is discharged at a level in the upper region of the reactor (1).
Abstract:
A reactor unit in a system for the production of hydrogen-rich gas from a liquid raw fuel includes (1) a reaction chamber for a reaction medium and which contains a catalyst material; and (2) two tempering chambers separated from one another. The two tempering chambers are associated with different areas of the reaction chamber, so that within the reaction chamber two reaction zones are formed, which can be held at different temperature levels.
Abstract:
A reforming reactor includes (1) a reformer section for converting a starting material mixture into a reformate product by means of an endothermal reforming reaction; (2) a CO shift section to convert the carbon monoxide contained in the reformate product into carbon dioxide by the CO shift reaction; and (3) a catalytic burner unit for generating heat by catalytic combustion of a combustion gas. The catalytic burner has a heating area in thermal contact with the reformer section and a cooling area in thermal contact with the CO shift section having less combustion catalyst activity than the heating area. Combustion gas is fed counter-current-wise to the reformate product flowing through the CO shift stage and to the starting material mixture flowing through the reformer stage through the corresponding cooling area and through the adjoining heating area.
Abstract:
A tubular reactor and method for producing a product mixture in a tubular reactor where the tubular reactor comprises an internal catalytic insert having orifices for forming fluid jets for impinging the fluid on the tube wall. Jet impingement is used to improve heat transfer between the fluid in the tube and the tube wall in a non-adiabatic reactor. The tubular reactor and method may be used for endothermic reactions such as steam methane reforming and for exothermic reactions such as methanation.
Abstract:
The method for the esterification of a fatty acid F is carried out in a column with a packing. In addition to functioning as a catalytic reactor, the packing functions as a stripping section. A heteregenous catalysis of a fatty acid is carried out with an alcohol used in the same molar ratio or in excess. A gaseous alcohol-rich counter-flow is produced in a sump of the column by vaporization. Water is removed from the reaction zone by means of the counter-flow acting as a stripping gas. The loaded stripping gas is at least partially liquefied at the head of the column. The head product is separated into a water-rich fraction as well as an alcohol-rich fraction. The alcohol-rich fraction is returned to the process as a starting material for the esterification and for the production of the stripping gas.
Abstract:
A process for effecting mass transfer between a liquid phase and a gaseous phase in a filled-type column comprising an external shell which accommodates at least one filler-containing basket wherethrough the phases are caused to flow in countercurrent relationship, advantageously comprises the step of feeding the gaseous phase to the at least one basket through a gas-permeable surface thereof which is larger than the basket cross-section, preferably in a prevailing radial flow direction.
Abstract:
An elongate reaction vessel includes at least two stages in the vertical direction in which an endothermic or exothermic catalytic reaction is carried out and comprises: A catalytic reaction zone (12a, 12b) per stage (6, 7); Introducing (2) a reaction fluid to a stage adapted for transverse motion of the fluid across the whole vertical extent of the reaction zone; introducing and extracting the catalyst; a heat exchanger (5a) for reaction fluids located inside the vessel between two successive reaction zones; means (6) for transporting reaction fluids from one stage to another preferably connected to the exchanger of the stage under consideration and to the inlet for reaction fluids of the subsequent stage; means for recovering reaction fluids downstream of the last stage. The temperature variation in each zone and the temperature level are respectively adjusted by the thickness of each zone and by heat exchange.
Abstract:
A process for effecting mass transfer between liquid phase and a gaseous phase in a filled-type column having an external shell which accommodates at least one filler-containing basket wherethrough the phases are caused to flow in countercurrent relationship. The process advantageously includes the step of feeding the gaseous phase to the at least one basket through a gas-permeable surface thereof which is larger than the basket cross-section, preferably in a prevailing radial flow direction.
Abstract:
A hydrocarbon conversion process is described. The process includes passing a hydrocarbon stream through a plurality of reaction zones and a plurality of fired heaters, the effluent from a first reaction zone passing through one of the plurality of fired heaters before entering a second reaction zone. The plurality of fired heaters include a radiant section, an inlet manifold, an outlet manifold, at least one heater tube having an inlet and an outlet, the inlet being in fluid communication with the inlet manifold and the outlet being in fluid communication with the outlet manifold, and at least one burner, the inlet manifold of one of the plurality of fired heaters being at a vertical height different from a vertical height of at least one of the other inlet manifolds or at least one of the outlet manifolds.