Abstract:
The present disclosure relates to an additive and a catalyst composition for a catalytic cracking process of vacuum gas oil for preparing cracked run naphtha having reduced liquid olefin content, and increased propylene and butylene yields in the LPG fraction. The process makes use of a catalyst composition which is a mixture of an FCC equilibrated catalyst and an additive comprising a zeolite, phosphorus and a combination of metal promoters. The process is successful in achieving high propylene and butylene yields in the LPG fraction along with a lower liquid olefin content and increased aromatic content with increase in RON unit in the resultant cracked run naphtha, as compared to that achieved using an FCC equilibrated catalyst alone.
Abstract:
The present disclosure relates to a process for producing a finely divided metal-doped aluminogallate nanocomposite comprising mixing a carrier solvent with a bulk metal-doped aluminogallate nanocomposite to form a bulk metal-doped aluminogallate slurry and atomizing the bulk metal-doped aluminogallate slurry using a low temperature collision to produce a finely divided metal-doped aluminogallate nanocomposite, the composition of a nickel-doped aluminogallate nanocomposite (GAN), and a method of NO decomposition using the nickel-doped aluminogallate nanocomposite.
Abstract:
The present disclosure relates to a process for producing a finely divided metal-doped aluminogallate nanocomposite comprising mixing a carrier solvent with a bulk metal-doped aluminogallate nanocomposite to form a bulk metal-doped aluminogallate slurry and atomizing the bulk metal-doped aluminogallate slurry using a low temperature collision to produce a finely divided metal-doped aluminogallate nanocomposite, the composition of a nickel-doped aluminogallate nanocomposite (GAN), and a method of NO decomposition using the nickel-doped aluminogallate nanocomposite.
Abstract:
Disclosed are a complex oxide catalyst for dehydrogenation, a method of preparing the same, and use thereof, wherein the catalyst includes a first transition metal selected from the group consisting of gallium, vanadium, chromium, manganese, molybdenum, and zinc, a hydrogen-activating metal including at least one selected from the group consisting of Groups 8, 9, 10, and 11 elements in a periodic table, and alumina, the amount of the first transition metal being 0.1 wt % to 20 wt %, the amount of the hydrogen-activating metal being 0.01 wt % to 2 wt %, based on the amount of the alumina, the first transition metal being loaded on the alumina, and the hydrogen-activating metal being surrounded by the alumina.
Abstract:
The present disclosures and inventions relate to composite catalyst compositions for the catalytic oxidation of hydrocarbons such as propane with an oxygen containing stream, in the presence of a composite catalyst comprising CA that comprises at least components a metal M, a support S, and an optional alkali metal A, and also CB that comprises one or more mixed metal oxide phases comprising metals in the relative molar ratios indicated by the formula MoaVbGacPddNbeXf, to produce α,β-unsaturated carboxylic acids such as acrylic acid and/or olefins such as propylene.
Abstract:
The present disclosure generally relates to a silver-based epoxidation catalyst. In certain embodiments, a method is provided for modulating the reactivity of the silver-based epoxidation catalyst, comprising the catalyst being post-treated with at least two different salt solutions. In some embodiments, the treatment results in the deposition of one or more metals onto the surface of the catalyst. In further embodiments, method is also provided of using the silver catalyst to generate an epoxide from an olefin.
Abstract:
In accordance with the invention, there is provided a novel catalyst composition comprising MoVGaPdNbXY, wherein X comprises La, Te, Ge, Zn, In, or W; and Y comprises Al or Si; wherein Mo, V, Ga, Pd, Nb, La, Te, Ge, Zn, In, W, Al, or Si are optionally present in combination with oxygen; wherein the catalyst does not comprise an additional element that acts as a catalyst in the conversion of a propylene to the product. Also, disclosed is a method for the conversion of a propylene to a carboxylic acid moiety by contacting the propylene with the disclosed catalyst.
Abstract:
An oxidation catalyst is disclosed, which contains Ce and Ga, and a Ce—Ga composite oxide containing a solid solution in which a part of Ce is substituted with Ga. This oxidation catalyst is obtained in such a manner that pH of a mixed solution obtained by mixing a Ce-containing solution and a Ga-containing solution together is adjusted, and a precipitate obtained by coprecipitating Ce and Ga is dried and baked.
Abstract:
The present disclosures and inventions relate to composite catalyst compositions for the catalytic oxidation of hydrocarbons such as propane with an oxygen containing stream, in the presence of a composite catalyst comprising CA that comprises at least components a metal M, a support S, and an optional alkali metal A, and also CB that comprises one or more mixed metal oxide phases comprising metals in the relative molar ratios indicated by the formula MoaVbGacPddNbeXf, to produce α,β-unsaturated carboxylic acids such as acrylic acid and/or olefins such as propylene.
Abstract:
The present disclosures and inventions relate to a supported catalyst composition for the catalytic oxidation of a hydrocarbon such as propane with oxygen or air, in the presence of a catalyst composition comprising a support material and a mixed metal composition comprising metals in the molar ratios described by the formula MoaVbGacPddNbeZf, wherein the support material is neutral or oxidative.