摘要:
An RF biosensing system using an RF biosensor with glucose-responsive hydrogel-based microneedles can minimally invasively contact the epidermis/dermis/hypodermis of the skin or the skin surface/fat/muscle in vivo by using glucose-responsive hydrogel-based microneedles provided on the bottom of a flexible substrate of an RF biosensor using resonant frequencies within 400˜3,000 MHZ, detect and transmit the sensing signal to a reader antenna and a reader antenna sensing circuit through a readout coil by RF biosensing and wireless transmission through EM coupling of RF biosensors, and measure the sensing signals by a vector network analyzer (VNA), thereby providing biosensing of proteins, glucose, and fats within the skin in accordance with changes in capacitances of the sensing antenna circuit (LC resonator) of the RF biosensor, resonant frequency shift of the LC resonator, and changes in S-parameters.
摘要:
A modified starch material for biocompatible hemostasis, biocompatible adhesion prevention, tissue healing promotion, absorbable surgical wound sealing and tissue bonding, when applied as a biocompatible modified starch to the tissue of animals. The modified starch material produces hemostasis, reduces bleeding of the wound, extravasation of blood and tissue exudation, preserves the wound surface or the wound in relative wetness or dryness, inhibits the growth of bacteria and inflammatory response, minimizes tissue inflammation, and relieves patient pain. Any excess modified starch not involved in hemostatic activity is readily dissolved and rinsed away through saline irrigation during operation. After treatment of surgical wounds, combat wounds, trauma and emergency wounds, the modified starch hemostatic material is rapidly absorbed by the body without the complications associated with gauze and bandage removal.
摘要:
In some aspects, the present invention provides surgical procedures that comprise applying compositions into and/or onto tissue, including supporting tissues (e.g., ligaments, connective tissue, muscles, etc.) for pelvic organs, among other tissues. In other aspects, the present disclosure pertains to compositions that are useful for performing such procedures. In still other aspects, the present disclosure pertains to kits that are useful for performing such procedures.
摘要:
An object of the present invention is to provide an anti-adhesion membrane that has no toxicity to a living body, has flexibility allowing itself to fit an affected part as a hydrated gel, is uniformly crosslinked, and is immediately absorbed in a living body after maintaining its shape in the living body for a certain period of time.The present invention provides anti-adhesion material, which comprises a thermally crosslinked gelatin film, and has a water content of 60 to 85% calculated by the following formula (1): water content (%)=[(Ws−Wd)/Ws]×100(%) (1), in the formula (1), Ws representing a weight (wet weight) of the anti-adhesion material immersed in a phosphate buffered saline solution at a temperature of 25° C. for one hour, and Wd representing a weight (dry weight) of the anti-adhesion material dried completely using a vacuum drying apparatus.
摘要:
A modified starch material is arranged for biocompatible hemostasis, biocompatible adhesion prevention, tissue healing promotion, absorbable surgical wound sealing and tissue bonding, when applied as a biocompatible modified starch to the tissue of animals. The modified starch material produces hemostasis, reduces bleeding of the wound, extravasation of blood and tissue exudation, preserves the wound surface or the wound in relative wetness or dryness, inhibits the growth of bacteria and inflammatory response, minimizes tissue inflammation, and relieves patient pain. Any excess modified starch not involved in hemostatic activity is readily dissolved and rinsed away through saline irrigation during operation. After treatment of surgical wounds, combat wounds, trauma and emergency wounds, the modified starch hemostatic material is rapidly absorbed by the body without the complications associated with gauze and bandage removal.
摘要:
Assemblies, kits, and methods for occluding a vascular vessel, such as a varicose vein, are disclosed. An assembly can include a removable inner member, a removable outer member, and an elongated expandable member positioned in a compressed form between portions of the inner and outer members. To facilitate their removal, one or both of the inner and outer members can include a handle coupled to a proximal end. The elongated expandable member can include a gelatin material or a collagen material that is configured, when wetted, to expand from a compressed first diametrical size to a second larger diametrical size within a time period of 5 minutes or less. At the second larger diametrical size, the gelatin or collagen material can occlude a vascular vessel for a period of at least 20 days without degrading.
摘要:
A method of sterilizing a polymeric material that is sensitive to radiation. The method includes the steps of applying at least one radiosensitizer to the polymeric material and irradiating the polymeric material with a suitable radiation at an effective dose and time to sterilize the polymeric material. Also disclosed is a method of enhancing the ability of a medical device to withstand sterilization by radiation and a bioabsorbable polymeric medical device.
摘要:
A medical film that is excellent in biocompatibility and bioabsorbability and has an excellent strength in suturing and bonding is provided. A reinforcing material 12 made of a biodegradable polymer is placed in a gelatin solution so as to allow the solution to infiltrate in the reinforcing material 12 and then the gelatin is dried. This allows the gelatin that has infiltrated entirely in an internal part of the reinforcing material 12 to gel, thereby forming a gelatin film 11. Thus, a medical film 1 in which the reinforcing material 12 and the gelatin film 11 are integrated is obtained. The gelatin film 11 preferably is a cross-linked gelatin film.
摘要:
The present invention relates to a gelatin derivative having an organic compound as a graft chain and a high-molecular weight micelle containing the gelatin derivative. As the organic compound, a low molecular weight compound such as succinic acid, ethylenediamine, etc., or a high-molecular weight compound such as polyethylene glycol, polylactic acid, etc. can be used. The high-molecular weight micelle can be used as a pharmaceutical composition excellent in control of sustained release or targeting property by carrying it on a drug, etc. Also, the gelatin derivative can be an excellent adhesion preventing membrane by crosslinking it.
摘要:
An object of the present invention is to provide an anti-adhesion membrane that has no toxicity to a living body, has flexibility allowing itself to fit an affected part as a hydrated gel, is uniformly crosslinked, and is immediately absorbed in a living body after maintaining its shape in the living body for a certain period of time.The present invention provides anti-adhesion material, which comprises a thermally crosslinked gelatin film, and has a water content of 60 to 85% calculated by the following formula (1): water content (%)=[(Ws−Wd)/Ws]×100(%) (1), in the formula (1), Ws representing a weight (wet weight) of the anti-adhesion material immersed in a phosphate buffered saline solution at a temperature of 25° C. for one hour, and Wd representing a weight (dry weight) of the anti-adhesion material dried completely using a vacuum drying apparatus.