摘要:
The present invention comprises poly(vinyl benzoate) nanoparticle suspensions as molecular carriers. These nanoparticles can be formed by nanoprecipitation of poly(vinyl benzoate) in water using Pluronic F68 as surfactant, to create spherical nanostructures measuring about 200-250 nm in diameter which are stable in phosphate buffer and blood serum, and only slowly degrade in the presence of esterases. Kinetics experiments in phosphate buffer indicate that 78% of the coumarin-6 was encapsulated within the polymer matrix of the nanoparticle, and the residual 22% of coumarin-6 was surface-bound and quickly released. The nanoparticles are non-toxic in vitro towards human epithelial cells (IC50>1000 μg/mL) and primary bovine primary aortic endothelial cells (IC50>500 μg/mL), and exert non-observable bactericidal activity against a selection of representative test microbes (MIC >250 μg/mL). Poly(vinyl benzoate) nanoparticles are suitable carriers for molecular delivery of lipophilic small molecules such as drugs pharmaceutical and imaging agents.
摘要:
Finely divided nylon-4 particles are prepared from a solution of polypyrrolidone in 2-pyrrolidone by precipitation in water. The washed particles are contacted with iodine to provide a water insoluble complex for use in biocidal pharmaceutical compositions which slowly release elemental iodine over time.
摘要:
A novel method of delivering drugs and diagnostics across the blood-brain barrier or blood-nerve barrier is disclosed. Drugs or diagnostic agents are incorporated into nanoparticles which have been fabricated in conventional ways. These nanoparticles are then coated with additional surfactant and given to the body of animals or humans. This allows drugs or diagnostic agents to cross the blood-brain barrier (bbb) to achieve one or more of the following benefits: (1) reducing the dose of a therapeutic drug or diagnostic agent which, when given peripherally, maintains the biological or diagnostic potency in the nervous system, (2) allowing drugs that normally do not cross the bbb to penetrate into the nervous system, and (3) reducing the peripheral side effects by increasing the relative amount of the drug reaching the brain.
摘要:
A controlled release pharmaceutical formulation comprises nanoparticles formed of a biodegradable polycyanoacrylate polymer in which insulin is entrapped, the insulin being complexed to the polycyanoacrylate. These particles are capable of releasing bioactive insulin in vivo at a slower release rate than nanoparticles in which the insulin is free. The formulation may comprise a mixture of nanoparticles in which the insulin is free and nanoparticles in which it is complexed, so as to obtain the desired release profile. The nanoparticles have a preferred loading of 15-25% w/v insulin and a preferred size of 100-400 nm. Administration may be oral or parenteral, and for oral administration, an enteric coating may be provided to target release to the small intestine. Complexing of the insulin is achieved by the polymerisation of cyanoacrylate monomer in the presence of insulin at a low pH, preferably at about pH=2.
摘要:
The presently-disclosed subject matter includes nanoparticles that comprise a plurality of assembled polymers. In some embodiments the polymers comprise a first block that includes hydrophilic monomers, the first block substantially forming an outer shell of the nanoparticle, and a second block that includes cationic monomers and hydrophobic monomers, the second block substantially forming a core of the nanoparticle. In some embodiments a polynucleotide is provided that is bound to the cationic monomers of the nanoparticle. The presently-disclosed subject matter also comprises methods for using the present nanoparticles to include RNAi in a cell as well as methods for making the present nanoparticles.
摘要:
The invention is directed to biocompatible conjugated polymer nanoparticles including a copolymer backbone, a plurality of sidechains covalently linked to said backbone, and a plurality of platinum compounds dissociably linked to said backbone. The invention is also directed to dicarbonyl-lipid compounds wherein a platinum compound is dissociably linked to the dicarbonyl compound. The invention is also directed to methods of treating cancer or metastasis. The methods includes selecting a subject in need of treatment for cancer or metastasis and administering to the subject an effective amount of any of the nanoparticles, compounds, or compositions of the invention.
摘要:
The various embodiments herein provide a gold coated SPIONs with jagged surface. The gold coated SPIONs have a core and a shell. The core is a SPION molecule and the shell is a jagged gold layer. A non-uniform polymeric gap exists between the core and the shell. The embodiments also provide a method of producing the jagged gold coated SPIONs by mixing a colloidal dispersion of SPIONs with pH sensitive polymers. Adding a gold salt to the above mixture and reducing the gold salt to form jagged gold coated SPIONs.
摘要:
A composition for delivering an active agent to the lymphatic system comprises a plurality of colloidal particles and an active agent associated with each particle, wherein the surface of each particle has a hudrophobicity ratio as defined of less than 10, or wherein a modifying agent is adsorbed onto the surface of each particle such that the modifying agent gives an advancing contact angle as defined of less than 60.degree. or wherein the adsorbed layer thickness as defined is less than 10 nm or the albumin uptake ratio is between 0.2 and 0.5. The composition may satisfy one or more of these requirements. Preferred modifying agents are non-ionic surfactants, in particular block copolymers containing polyethyleneglycol.
摘要:
A composition for delivering an active agent to the lymphatic system comprises a plurality of colloidal particles and an active agent associated with each particle, wherein the surface of each particle has a hydrophobicity ratio of less than 10 as defined by hydrophobic interaction chromatography.
摘要:
An exemplary Raman-active nanoparticle can be provided, which can include, for example, a hydrophilic cyclopropenium cation, and one or more copolymers derived from a hydrophobic organic polymerizable molecule, where the hydrophobic organic polymerizable molecule can be a Raman-active molecule, and where the Ramain-active nanoparticle can be free of heavy metals. In some exemplary embodiments of the present disclosure, the hydrophobic organic polymerizable molecule can be a styrenic derivative. The styrenic derivative can be an alkyne, a nitrile, or a deuterated styrene. The hydrophobic organic polymerizable molecule can be a methacrylate derivative.