摘要:
The various embodiments herein provide a gold coated SPIONs with jagged surface. The gold coated SPIONs have a core and a shell. The core is a SPION molecule and the shell is a jagged gold layer. A non-uniform polymeric gap exists between the core and the shell. The embodiments also provide a method of producing the jagged gold coated SPIONs by mixing a colloidal dispersion of SPIONs with pH sensitive polymers. Adding a gold salt to the above mixture and reducing the gold salt to form jagged gold coated SPIONs.
摘要:
The various embodiments herein provide super paramagnetic iron oxide nanoparticles (SPIONs). The SPIONs have a plurality of metallic coatings and plurality of polymeric gaps. The embodiments herein also provide a method of synthesizing the SPIONs with metallic rings and polymeric gaps. The metallic coatings form a ring like structure on the outer surface of the SPION. The SPION has a size of 13 nm. The ring has a thickness of 2-3 nm. The rings are one or more in number. The polymeric gaps have a thickness of 3-5 nm. The polymeric gaps are one or more in number. The method involves mixing the SPIONs with a plurality of polymers and then forming a metallic ring on the outer surface of the SPIONs. The SPIONs have anti-bacterial properties and stop a growth of bacterial biofilms. The SPIONs also have SERS properties.
摘要:
The various embodiments herein provide a gold coated SPIONs with jagged surface. The gold coated SPIONs have a core and a shell. The core is a SPION molecule and the shell is a jagged gold layer. A non-uniform polymeric gap exists between the core and the shell. The embodiments also provide a method of producing the jagged gold coated SPIONs by mixing a colloidal dispersion of SPIONs with pH sensitive polymers. Adding a gold salt to the above mixture and reducing the gold salt to form jagged gold coated SPIONs.
摘要:
The various embodiments herein provide for the engineered multimodal super paramagnetic iron oxide nanoparticles (SPIONs) with a fluorescent dye. The SPIONs comprise fluorescent polymer dye arranged in a gap between a SPION core and a gold shell. The SPIONS are provided with a gold coating. The gap is made up of a polymeric molecule such as 6-arm anthracene terminated. The core of the nanoparticle is made up of a magnetic metal oxide. The method for synthesizing SPIONs involves preparing carboxyl-dextran complex and the SPIONS. The SPIONs are coated with carboxyl-dextran complex. The coated SPIONs coated are subjected to fluorescent polymer and gold nano shell coating. The prepared SPIONs are characterized by light scattering measurement and magnetization measurements.
摘要:
The various embodiments herein provide super paramagnetic iron oxide nanoparticles (SPIONs). The SPIONs have a plurality of metallic coatings and plurality of polymeric gaps. The embodiments herein also provide a method of synthesizing the SPIONs with metallic rings and polymeric gaps. The metallic coatings form a ring like structure on the outer surface of the SPION. The SPION has a size of 13 nm. The ring has a thickness of 2-3 nm. The rings are one or more in number. The polymeric gaps have a thickness of 3-5 nm. The polymeric gaps are one or more in number. The method involves mixing the SPIONs with a plurality of polymers and then forming a metallic ring on the outer surface of the SPIONs. The SPIONs have anti-bacterial properties and stop a growth of bacterial biofilms. The SPIONs also have SERS properties.