摘要:
Various embodiments concern video patient monitoring with detection zones. Various embodiments can comprise a camera, a user interface, and a computing system. The computing system can be configured to perform various steps based on reception of a frame from the camera, including: calculate a background luminance of the frame; monitor for a luminance change of a zone as compared to one or more previous frames, the luminance change indicative of patient motion in the zone; and compare the background luminance to an aggregate background luminance, the aggregate background luminance based on the plurality of frames. If the background luminance changed by more than a predetermined amount, then the aggregate background luminance can be set to the background luminance, luminance information of the previous frames can be disregarded, and motion detection can be disregarded.
摘要:
A method of detecting stroke in a patient receiving a pressure support therapy includes: receiving data from one or more sensors structured to gather data related to patient respiration while receiving pressure support therapy from an airflow generator via a patient circuit; analyzing the data from the one or more sensors while pressure support therapy is provided to the patient; determining that the analyzed data from the one or more sensors is indicative of a patient experiencing respiratory changes indicative of a stroke; and responsive to said determining, triggering at least one alarm.
摘要:
A medical monitoring system includes: one or more signal sampling devices to detect parameter data corresponding to at least one physiological parameter; memory to store the parameter data corresponding to the at least one physiological parameter; a display to display parameter data obtained by at least one sensor; and a processor to obtain, according to the parameter data, abnormal event indications having a plurality of different attributes and transmit the abnormal event indications to the display; wherein the abnormal event indications are shown as anomalies identifiers on a timeline.
摘要:
There are provided systems and methods for performing mean arterial pressure (MAP) derived prediction of future hypotension. Such a system includes a hardware unit including a hardware processor and a system memory, a hypotension prediction software code stored in the system memory, and a sensory alarm. The hardware processor is configured to execute the hypotension prediction software code to receive MAP data of the living subject, and to transform the MAP data to one or more parameters predictive of a future hypotension event of the living subject. The hardware processor is further configured to execute the hypotension prediction software code to determine a risk score of the living subject corresponding to the probability of the future hypotension event based on at least some of the one or more parameters, and to invoke the sensory alarm if the risk score of the living subject satisfies a predetermined risk criteria.
摘要:
A monitor configured to monitor autoregulation includes a memory encoding one or more processor-executable routines and a processor configured to access and execute the one or more routines encoded by the memory. When executed, the routines cause the processor to receive one or more physiological signals from a patient, determine a measure indicative of an autoregulation status of the patient based on the one or more physiological signals, generate an autoregulation alarm indicative of an impaired autoregulation status when the measure exceeds a predetermined threshold for more than a predetermined period of time.
摘要:
There is provided a restraint management apparatus. The restraint management apparatus comprises a processing unit arranged to: receive one or more types of sensor data; determine a status of a subject based on the received sensor data; determine, based on the determined subject status, a restraint parameter for a restraint device configured to restrain a body part of the subject; and output a signal based on the determined restraint parameter.
摘要:
The present disclosure provides a system and method of determining a risk score for triage. In particular, a system is provided for providing an assessment of risk of a cardiac event for a patient, for example an incoming patient to a hospital emergency department complaining of chest pain. In the disclosure, the system includes an input device for measuring physiological data based vital signs parameter of the patient, a twelve-lead electrocardiogram (ECG) device for establishing an ECG obtained from results of the electrocardiography procedure, and determining an ECG parameter and a heart rate variability (HRV) parameter therefrom. An ensemble-based scoring system is further provided, establishing weighted classifier based on past patient data and where the vital signs parameter, the ECG parameter and the HRV parameter are compared to corresponding weighted classifiers to determine a risk score. A corresponding method to determine a risk score for triage is also provided.
摘要:
Devices and methods for detecting physiological target event such as events indicative of HF decompensation status are described. An ambulatory medical device (AMD) can measure bio-impedance, such as thoracic impedance, from a patient. The AMD can receive a specified threshold within a range or a distribution of impedance measurement, or a specified percentile such as less than 50th percentile, and calculate a representative impedance value (ZRep) corresponding to the specified threshold or percentile using a plurality of thoracic impedance measurements. The representative impedance value can be calculated using an adaptation process, or using an estimated distribution of the impedance measurements. The AMD can include a physiologic event detector circuit that can generate a trend of representative impedance values over a specified time period, and to detect a target physiologic event such as indicative of HF decompensation using the trend of representative impedance values.
摘要:
A gatekeeper electronic signal can be generated by a patient sensor and/or in an intermediate device, such as an electrical cable, that is separate from a patient's physiological information electronic signal. The gatekeeper signal can be generated to indicate to a computer monitor that the sensor and/or cable is of the type that is compatible with, and/or usable with, such computer monitor, and/or that the sensor and/or cable is properly attached to the computer monitor. The gatekeeper signal can be created by an ambient temperature sensor on, or in electrical communication with, the patient monitor, and/or the gatekeeper signal can be created by a gatekeeper electronic signal generator to simulate an ambient temperature value. The gatekeeper signal can be separate from an electronic signal or plurality of signals that include patient physiological information, and the gatekeeper signal may not include any patient physiological information.
摘要:
The present invention relates generally to an ultimate comfort n care bed, and a bed apparatus capable of seamlessly changing bed sheets while being occupied by a person, a method of relieving ulcers, and a method thereof. The present invention also relates to a medical or a hospital bed, and, more particularly, to a hospital bed capable of seamlessly changing bed-sheets while the hospital bed is occupied by a patient. The present invention also comprises of a medical bed apparatus which allows the seamlessly changing of a used bed sheet with a new bed sheet while the bed is occupied by a person, and a method thereof