摘要:
The present invention provides compositions and methods for producing flocculation moieties in photosynthetic organisms. The photosynthetic organisms are genetically modified to effect production, secretion, or both, of the flocculation moieties. Also provided are methods of flocculating organisms.
摘要:
Disclosed herein are methods and processes for the recovery of nutrients from non-organic phases produced during recovery of oleaginous compounds from biomass. The nutrients recovered can then be utilized to grow additional biomass.
摘要:
Algae transformed with one or more polynucleotides encoding proteins that confer herbicide resistance are provided. The algae can be grown in small or large scale cultures that include one or more herbicides for the production and isolation of various products.
摘要:
The present disclosure provides novel proteins that when over expressed in algae result in an increase or change in fatty acid and/or glycerol lipid production and/or accumulation, without a substantial decrease in the growth rate of the alga or the break down of algal components, such as chlorophyll. The present disclosure also describes methods of using the novel proteins to increase or change the production and/or accumulation of fatty acids and/or glycerol lipids in algae. In addition, these proteins are useful tools in obtaining information about the fatty acid and triacyglyceride (TAG) synthetic pathways in algae.
摘要:
Algae transformed with one or more polynucleotides encoding proteins that confer herbicide resistance are provided. The algae can be grown in small or large scale cultures that include one or more herbicides for the production and isolation of various products.
摘要:
The present invention provides a method and compositions for high throughput screening of genetically modified photosynthetic organisms for plasmic state. The present invention provides methods of producing one or more proteins, including biomass degrading enzymes in a plant. Also provided are the methods of producing biomass degradation pathways in alga cells, particularly in the chloroplast. Single enzymes or multiple enzymes may be produced by the methods disclosed. The methods disclosed herein allow for the production of biofuel, including ethanol.
摘要:
Terpene synthases are enzymes that directly convert IPP & DMAPP to terpenes, such as fusicoccadiene. Described herein are methods and compositions for the production of terpenes and terpenoids for use as fuel molecules or other useful components. Genetically engineered enzymes capable of producing terpenes and terpenoids are also described.
摘要:
Processes of converting to feedstocks comprising hydrocarbons to compositions comprising light hydrocarbon products are described herein. Also described are processes and methods of producing and refining compositions comprising terpenes from biomass that can be suitable as a fuel product.
摘要:
The present disclosure relates to refining a product from a biomass containing chlorophyll and/or pheophytins. In particular, a method of refining a product (such as a biofuel) from a photosynthetic organism is disclosed. The photosynthetic organism can be a naturally occurring organism or a genetically modified or altered organism. The method of refining comprises removing nitrogen to obtain the desired product. In some aspects, nitrogen is removed from a chlorophyll and/or pheophytin containing product by enzymatic degradation of chlorophyll and/or pheophytins and subsequent removal of the nitrogen
摘要:
The present disclosure relates to methods of expressing therapeutic proteins in photosynthetic organisms and the therapeutic proteins produced by the methods. The therapeutic proteins include high-mobility group box 1 (HMGB1) protein, fibronectin domain (10) (10FN3), fibronectin domain (14) (14FN3), interferon beta (IFNβ), proinsulin and vascular endothelial growth factor (VEGF). The photosynthetic organisms include prokaryotes such as cyanobacteria and eukaryotes such as alga and plants. Transformation of eukaryotes is preferably the plastid genome, more preferably the chloroplast genome.