Abstract:
Disclosed herein are processes for obtaining a microbial oil comprising one or more polyunsaturated fatty acids (PUFAs) from one or more microbial cells by lysing the cells to form a lysed cell composition, treating the lysed cell composition to form an oil-containing emulsion and then recovering the oil from the oil-containing emulsion. Further disclosed herein is microbial oil comprising one or more PUFAs that is recovered from microbial cells by at least one process described herein.
Abstract:
The processes for obtaining a microbial oil comprising one or more polyunsaturated fatty acids (PUFAs) from one or more microbial cells comprise removing water from the cell fermentation broth or lysed cell composition before demulsification is conducted. Such a process has the benefits of reduced demulsification time and reduced salt use. Microbial oil comprising one or more PUFAs can be recovered from microbial cells by the process.
Abstract:
Methods and compositions for the production of dielectric fluids from lipids produced by microorganisms are provided, including oil-bearing microorganisms and methods of low cost cultivation of such microorganisms. Microalgal cells containing exogenous genes encoding, for example, a sucrose transporter, a sucrose invertase, a fructokinase, a polysaccharide-degrading enzyme, a lipid pathway modification enzyme, a fatty acyl-ACP thioesterase, a desaturase, a fatty acyl-CoA/aldehyde reductase, and/or an acyl carrier protein are useful in manufacturing dielectric fluids.
Abstract:
Methods for obtaining corn oil from milled corn germ (e.g., dry milled corn germ), involving adding water, at least one acidic cellulase, at least one acidic protease, and at least one phytase to milled corn germ to obtain corn oil.
Abstract:
Systems and methods are provided for separating high value by-products, such as oil and/or germ, from grains used for alcohol production. In one embodiment, a method for separating by-products from grains used for alcohol production includes, subjecting milled grains to liquefaction to provide a liquefied starch solution including fiber, protein, and germ. The germ is separated from the liquefied starch solution. The separated germ is ground, e.g., to a particle size less than 50 microns, to release oil to provide a germ/oil mixture. Then, prior to fermentation, the oil is separated from the germ/oil mixture to yield an oil by-product. The pH of the germ/oil mixture can be adjusted to about 8 to about 10.5 and/or cell wall breaking enzymes or chemicals may be added to help release oil from the germ. In one example, the oil yield is greater than 1.0 lb/Bu.
Abstract:
Improved methods for extracting lipid-containing molecules from microbes are disclosed. The methods utilize selected surfactants for extraction of lipids and lipopolysaccharides from microbes, such as bacteria and fungi. The extracted lipids and lipopolysaccharides may be used, for example, to identify the source microbe via mass spectroscopy.
Abstract:
Provided here is an enzymatic process for production of low saturate oil, in one embodiment, low palmitic oils from triacylglycerol sources. The enzymes used in the processes herein are saturase enzymes, including palmitase enzymes. The oils produced by the processes herein are used in food products.
Abstract:
Methods and systems used to extract lipids suitable in production of biofuels from a fermentation broth may include using heat to pre-treat the fermentation broth in order to more easily extract a product from oleaginous microorganisms in the broth. Additionally or alternatively, a combination of enzymes including amylase, 1-4 mannosidase, and 1-3 mannosidase may be used to break down cell walls of the oleaginous microorganisms. Residual broth water may be recycled and used as imbibition water for washing a process feedstock to extract sugar.
Abstract:
The present invention relates to processes for obtaining a lipid from a cell by lysing the cell to form a lysed cell composition and obtaining the lipid from the demulsified lysed cell composition. The invention is also directed to a lipid prepared by the processes of the present invention. The invention is also directed to microbial lipids having a particular anisidine value, peroxide value, and/or phosphorus content.