摘要:
In order to automatically adjust a self-bias on a substrate to a constant value at all times and to form a high-quality insulating film with excellent process reproducibility, a vacuum thin film forming apparatus according to the present invention includes: a high-frequency sputtering device having a chamber, an evacuation means for evacuating the inside of the chamber, a gas introduction means for supplying gas into the chamber, a substrate holder provided within the chamber, and an electrode provided within the substrate holder; and at least one vacuum treatment chamber that can be selected from a group including a physical vapor deposition (PVD) chamber, a chemical vapor deposition (CVD) chamber, a physical etching chamber, a chemical etching chamber, a substrate heating chamber, a substrate cooling chamber, an oxidation treatment chamber, a reduction treatment chamber, and an ashing chamber, wherein the high-frequency sputtering device further includes a variable impedance mechanism electrically connected to the electrode for adjusting the potential of the substrate on the substrate holder.
摘要:
Provided is a high-quality magnetoresistive thin film by using a method of controlling self bias of a high-frequency sputtering device. In order to control the self bias for the substrate by adjusting a substrate potential, the high-frequency sputtering device according to the present invention includes: a chamber; evacuation means for evacuating the inside of the chamber; gas introduction means for supplying a gas into the chamber; a substrate holder provided with a substrate mounting table; rotation drive means capable of rotating the substrate holder; a sputtering cathode provided with a target mounting table and arranged such that the surface of the target mounting table is non-parallel to the surface of the substrate mounting table; an electrode disposed inside the substrate holder; and a variable impedance mechanism electrically connected to the electrode, for adjusting the substrate potential on the substrate holder.
摘要:
Provided is a high-quality magnetoresistive thin film by using a method of controlling self bias of a high-frequency sputtering device. In order to control the self bias for the substrate by adjusting a substrate potential, the high-frequency sputtering device according to the present invention includes: a chamber; evacuation means for evacuating the inside of the chamber; gas introduction means for supplying a gas into the chamber; a substrate holder provided with a substrate mounting table; rotation drive means capable of rotating the substrate holder; a sputtering cathode provided with a target mounting table and arranged such that the surface of the target mounting table is non-parallel to the surface of the substrate mounting table; an electrode disposed inside the substrate holder; and a variable impedance mechanism electrically connected to the electrode, for adjusting the substrate potential on the substrate holder.
摘要:
The vacuum heating and cooling apparatus can rapidly heat and cool only the substrate after film-forming treatment while maintaining high vacuum. The temperature rise of members in the chamber with time caused by accumulation of heat is suppressed, and the variation of temperature between substrates is decreased. In an embodiment, the heating and cooling apparatus for heating and cooling a substrate in a vacuum, includes: a vacuum chamber; a radiation energy source positioned at the vacuum chamber on an atmosphere side for emitting a heating light; an incidence part for causing the heating light from the radiation energy source to enter the vacuum chamber; a substrate-holding member for holding the substrate; and a substrate-transfer mechanism for transferring the substrate held by the substrate-holding member in a heating state to a heating position proximal to the radiation energy source, and transferring the substrate and the substrate-holding member in a non-heating state to a non-heating position distant from the radiation energy source, wherein the substrate-holding member has a plate shape for placing the substrate thereon and has an outer shape larger than that of the incidence part for causing the heating light to enter the vacuum chamber.
摘要:
The present invention provides a fabricating method of a magnetoresistive element having an MR ratio higher than a conventional MR ratio. In a step of depositing a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer on a substrate using a sputtering method in one embodiment of the present invention, the step of depositing the magnetization fixed layer deposits a ferromagnetic layer containing Co atoms, Fe atoms, and B atoms by a co-sputtering method using a first target containing Co atoms, Fe atoms and B atoms, and a second target having different B atom content from that of the first target.
摘要:
A method and an apparatus of fabricating a tunnel magnetic resistive element which do not show much dispersion in RA and capable of obtaining a high MR ratio in a low RA are provided. The method of fabricating a tunnel magnetic resistive element includes a first ferromagnetic layer, a tunnel barrier layer made of metal oxide and a second ferromagnetic layer, wherein a step of making the tunnel barrier layer includes carrying out film formation of a first metal layer while doping oxygen on the first ferromagnetic layer, subsequently an oxidation process on the oxygen-doped first metal layer to make an oxide layer and film formation of a second metal layer on the oxide layer.
摘要:
The magnetic anisotropy of a magnetic layer in a spin valve tunnel magnetoresistive element or giant magnetoresistive element is enhanced. Deposition of the magnetic layer is performed by making sputtering particles obliquely incident on a substrate from a certain incident direction at a certain incident angle.
摘要:
A magnetoresistive device has an MgO (magnesium oxide) layer provided between a first ferromagnetic layer and a second ferromagnetic layer. The device is manufactured by forming a film of the MgO layer in a film forming chamber. A substance whose getter effect with respect to an oxidizing gas is large is adhered to surfaces of components provided in the chamber for forming the MgO layer. The substance having a large getter effect is a substance whose value of oxygen gas adsorption energy is 145 kcal/mol or higher. Ta (tantalum), in particular, is preferable as a substance which constitutes the magnetoresistive device.
摘要:
An embodiment of the invention provides a method of manufacturing a magnetoresistance element with an MR ratio higher than that of the related art.A method of manufacturing a magnetoresistance element includes a step of forming a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer provided between the magnetization fixed layer and the magnetization free layer on a substrate. In the method, the tunnel barrier layer is formed by arranging a target that has a diameter smaller than that of the substrate, contains a magnesium oxide sintered body, and has a relative density 90% or more so as to be inclined with respect to a surface to be deposited of the substrate, and forming a magnesium oxide layer using a sputtering method while rotating the substrate.
摘要:
The present invention provides a fabricating method of a magnetoresistive element having an MR ratio higher than a conventional MR ratio. In a step of depositing a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer on a substrate using a sputtering method in one embodiment of the present invention, the step of depositing the magnetization free layer deposits a ferromagnetic layer containing Co atoms, Fe atoms, and B atoms by a co-sputtering method using a first target containing Co atoms, Fe atoms and B atoms, and a second target having different B atom content from that of the first target.