Abstract:
An electromagnetic relay for starting a motor of a starter includes a resistor to reduce an activation current that flows through the motor from a battery for activation of the motor, a relay contact that causes the starting current to flow while bypassing the resistor, a relay coil that forms an electromagnet when excited by energization, and a control circuit that controls an excited state of the relay coil for activation of the motor to open or close the relay contact, thus controlling energization of the motor from the battery via the resistor. The electromagnetic relay incorporates therein the control circuit.
Abstract:
An electromagnetic relay for starting a motor of a starter includes a resistor to reduce an activation current that flows through the motor from a battery for activation of the motor, a relay contact that causes the starting current to flow while bypassing the resistor, a relay coil that forms an electromagnet when excited by energization, and a control circuit that controls an excited state of the relay coil for activation of the motor to open or close the relay contact, thus controlling energization of the motor from the battery via the resistor. The electromagnetic relay incorporates therein the control circuit.
Abstract:
A normally-closed electromagnetic relay which may be used in controlling a supply of electric current to an automotive engine starter. The electromagnetic relay is equipped with a resistor and a shirt circuit. The short circuit is created by closing of relay contacts when a relay coil is energized to establish an electric connection between ends of the resistor to supply the current from a battery to an electric motor without flowing through the resistor and opened by opening of the relay contacts when the relay coil is deenergized to supply the electric current from the battery to the electric motor through the resistor. If a motor drive signal line leading to the electromagnetic relay is disconnected when the relay coil is kept energized, it will cause the short circuit to be established to ensure the supply of current to the motor, which also avoids the melting down of the resistor.
Abstract:
The starter-use electromagnetic switch has an electrical contact interposed in a power supply line for supplying power from a battery to a starter motor, the main contact being turned on and off in interlock with energization of an electromagnet implemented by an excitation coil. The electromagnetic switch includes a connection fitting connected to the excitation coil at one end thereof and drawn outside through a resin cover of the electromagnetic switch at the other end thereof, and a terminal fitting electrically and mechanically connected to the other end of the connection fitting at one end thereof, the other end of the terminal fitting being branched into first and second terminal pieces. The first terminal piece serves as an excitation terminal supplied with power from the battery. The second terminal piece serves as a connection terminal connected to an excitation terminal of an external electromagnetic switch through a cable.
Abstract:
In a plasma display panel, a protective layer of a front plate is formed of a base protective layer and a particle layer. The base protective layer is a thin film of metal oxide containing at least one of magnesium oxide, strontium oxide, calcium oxide, and barium oxide. The particle layer is formed in a manner that single-crystal particles of magnesium oxide having a peak of emission intensity at 200-300 nm two times or higher than another peak of emission intensity at 300-550 nm in the emission spectrum in cathode luminescence emission are stuck on the base protective layer. A panel driving circuit drives the plasma display panel with a subfield structure in which subfields are temporally disposed so that a magnitude of luminance weight has a monotonous decrease from a subfield where an all-cell initializing operation is performed to a subfield where a next all-cell initializing operation is performed.
Abstract:
A starter includes an electromagnetic solenoid that generates force for pushing a pinion gear 6 to a ring gear side, and an electromagnetic switch that opens and closes a motor contact point. When idle-stop is performed, an ECU energizes a solenoid coil of the electromagnetic solenoid during inertial rotation until the ring gear stops rotating. After rotation of an engine is stopped, the ECU stops energizing the solenoid coil. As a result, in the starter, the pinion gear can mesh with the ring gear that is rotating by inertia without use of the rotational force of a motor. The meshed state can be maintained even after energization of the solenoid coil is stopped.
Abstract:
In a plasma display panel, a protective layer of a front plate includes a base protective layer and a particle layer. The base protective layer is formed of a thin film containing magnesium oxide. The particle layer is formed by sticking, to base protective layer, agglomerated particles in which a plurality of single-crystal particles of magnesium oxide are agglomerated. A panel driving circuit drives the panel in a manner that subfields are temporally disposed so that a luminance weight is monotonically decreased from a subfield in which an all-cell initializing operation is performed to a subfield immediately preceding a subfield in which a next all-cell initializing operation is performed.
Abstract:
Picture element electrodes (30) and common electrodes (36) are provided in one of two substrates facing each other. Each picture element (20) has a plurality of sub picture elements (22). In a range in which a signal voltage of an image signal is low, a display is carried out only in a first sub picture element (22a) having narrower electrode spacing, whereas in a range in which the signal voltage of the image signal is high, a display is carried out in both of the first sub picture element (22a) and a second sub picture element (22b) having wider electrode spacing.
Abstract:
In a system, a starter includes a motor for rotatably driving an output shaft with a pinion and an actuator that shifts the pinion toward a ring gear to be engaged with the ring gear. A monitor unit monitors a rotational speed of the internal combustion engine. The rotational speed of the internal combustion engine drops after an automatic control for stop of the engine. When an engine restart request occurs with the rotational speed being within a preset range during the rotational speed of the internal combustion engine dropping by the automatic control for stop of the engine, a drive unit drives the actuator to shift the pinion toward the ring gear to be engaged with the ring gear. The drive unit rotatably drives the motor with the pinion being engaged with the ring gear to thereby crank the crankshaft.
Abstract:
The present invention provides a liquid crystal display device providing uniform display without lowering the transmissivity.The present invention is a liquid crystal display device comprising: a first substrate and a second substrate positioned to face the first substrate; and a liquid crystal layer interposed between the first substrate and the second substrate, wherein the liquid crystal layer contains liquid crystal molecules having positive dielectric anisotropy, the liquid crystal molecule is aligned in a direction vertical to a surface of the first substrate when voltage is not applied, the first substrate comprises a pixel electrode and a common electrode, each comprising a core portion and a comb-tooth portion, the comb-tooth portions of the pixel electrode and of the common electrode are arranged in parallel with each other and alternately engaged at a constant interval, the core portion of the common electrode comprises two parallel portions that are in parallel with the longitudinal direction of the comb-tooth portion of the common electrode, the two parallel portions are each positioned outside the outermost comb-tooth portions of the pixel electrode, and (W−S)/(L+S) satisfies “2n+1”, in which “W” represents a distance between the two parallel portions, “L” represents the width of each of the comb-tooth portions of the pixel electrode and the common electrode, “S” represents a distance between a comb-tooth portion of the pixel electrode and an adjacent comb-tooth portion of the common electrode and also represents a distance between one of the outermost comb-tooth portions of the pixel electrode and one of the two parallel portions, and “n” represents the number of the comb-tooth portions of the common electrode.