摘要:
Methods and structures are provided for full silicidation of recessed silicon. Silicon is provided within a trench. A mixture of metals is provided over the silicon in which one of the metals diffuses more readily in silicon than silicon does in the metal, and another of the metals diffuses less readily in silicon than silicon does in the metal. An exemplary mixture includes 80% nickel and 20% cobalt. The silicon within the trench is allowed to fully silicide without void formation, despite a relatively high aspect ratio for the trench. Among other devices, recessed access devices (RADs) can be formed by the method for memory arrays.
摘要:
Methods and structures are provided for full silicidation of recessed silicon. Silicon is provided within a trench. A mixture of metals is provided over the silicon in which one of the metals diffuses more readily in silicon than silicon does in the metal, and another of the metals diffuses less readily in silicon than silicon does in the metal. An exemplary mixture includes 80% nickel and 20% cobalt. The silicon within the trench is allowed to fully silicide without void formation, despite a relatively high aspect ratio for the trench. Among other devices, recessed access devices (RADs) can be formed by the method for memory arrays.
摘要:
Methods are provided for simultaneously processing transistors in two different regions of an integrated circuit. Planar transistors are provided in a logic region while recessed access devices (RADs) are provided in an array region for a memory device. During gate stack patterning in the periphery, word lines are recessed within the trenches for the array RADs. Side wall spacer formation in the periphery simultaneously provides an insulating cap layer burying the word lines within the trenches of the array.
摘要:
Methods and structures are provided for full silicidation of recessed silicon. Silicon is provided within a trench. A mixture of metals is provided over the silicon in which one of the metals diffuses more readily in silicon than silicon does in the metal, and another of the metals diffuses less readily in silicon than silicon does in the metal. An exemplary mixture includes 80% nickel and 20% cobalt. The silicon within the trench is allowed to fully silicide without void formation, despite a relatively high aspect ratio for the trench. Among other devices, recessed access devices (RADs) can be formed by the method for memory arrays.
摘要:
Methods are provided for simultaneously processing transistors in two different regions of an integrated circuit. Planar transistors are provided in a logic region while recessed access devices (RADs) are provided in an array region for a memory device. During gate stack patterning in the periphery, word lines are recessed within the trenches for the array RADs. Side wall spacer formation in the periphery simultaneously provides an insulating cap layer burying the word lines within the trenches of the array.
摘要:
Methods are provided for simultaneously processing transistors in two different regions of an integrated circuit. Planar transistors are provided in a logic region while recessed access devices (RADs) are provided in an array region for a memory device. During gate stack patterning in the periphery, word lines are recessed within the trenches for the array RADs. Side wall spacer formation in the periphery simultaneously provides an insulating cap layer burying the word lines within the trenches of the array.
摘要:
Methods and structures are provided for full silicidation of recessed silicon. Silicon is provided within a trench. A mixture of metals is provided over the silicon in which one of the metals diffuses more readily in silicon than silicon does in the metal, and another of the metals diffuses less readily in silicon than silicon does in the metal. An exemplary mixture includes 80% nickel and 20% cobalt. The silicon within the trench is allowed to fully silicide without void formation, despite a relatively high aspect ratio for the trench. Among other devices, recessed access devices (RADs) can be formed by the method for memory arrays.
摘要:
Methods are provided for simultaneously processing transistors in two different regions of an integrated circuit. Planar transistors are provided in a logic region while recessed access devices (RADs) are provided in an array region for a memory device. During gate stack patterning in the periphery, word lines are recessed within the trenches for the array RADs. Side wall spacer formation in the periphery simultaneously provides an insulating cap layer burying the word lines within the trenches of the array.
摘要:
Some embodiments include methods of forming isolation structures. A semiconductor base may be provided to have a crystalline semiconductor material projection between a pair of openings. SOD material (such as, for example, polysilazane) may be flowed within said openings to fill the openings. After the openings are filled with the SOD material, one or more dopant species may be implanted into the projection to amorphize the crystalline semiconductor material within an upper portion of said projection. The SOD material may then be annealed at a temperature of at least about 400° C. to form isolation structures. Some embodiments include semiconductor constructions that include a semiconductor material base having a projection between a pair of openings. The projection may have an upper region over a lower region, with the upper region being at least 75% amorphous, and with the lower region being entirely crystalline.
摘要:
A method of forming a field effect transistor includes forming trench isolation material within a semiconductor substrate and on opposing sides of a semiconductor material channel region along a length of the channel region. The trench isolation material is formed to comprise opposing insulative projections extending toward one another partially under the channel region along the channel length and with semiconductor material being received over the projections. The trench isolation material is etched to expose opposing sides of the semiconductor material along the channel length. The exposed opposing sides of the semiconductor material are etched along the channel length to form a channel fin projecting upwardly relative to the projections. A gate is formed over a top and opposing sides of the fin along the channel length. Other methods and structures are disclosed.