Abstract:
α2-6-Sialyltransferase (2,6ST) variants having improved α2-6-specific sialidase activity as compared to the native 2,6ST enzymes are described. The variants include GT80 sialyltransferases such as P. damselae Pd2,6ST. Methods for making de-sialylated products and screening sialidase activity are also described.
Abstract:
Heparosan synthase variants having improved expression levels, enhanced thermal stability, and/or reduced reverse glycosylation activity are provided. Methods for making oligosaccharides and polysaccharides, including heparin analogs and heparan sulfate analogs, are also described.
Abstract:
New 2-deoxy-2,3-dehydro-sialic acids and 2,7-anhydro-sialic acids, which are useful as sialidase inhibitors, and enzymatic methods for preparing them are disclosed. The methods include forming a reaction mixture comprising a glycoside acceptor, a sialic acid donor, and a sialyltransferase; maintaining the reaction mixture under conditions sufficient to form a sialoside; and contacting the sialoside with a Streptococcus pneumoniae sialidase to form the sialic acid product. Methods for the inhibition and sialidases and the treatment of cancer and infectious diseases are also disclosed.
Abstract:
The present invention provides novel methods for preparing glycosylated molecules such as oligosaccharides, glycolipids, and glycoproteins/peptides. Novel sialyltransferases are also disclosed. The method includes forming a reaction mixture containing an acceptor molecule, a donor substrate having a sugar moiety and a nucleotide, and a sialyltransferase selected from PmST3 (SEQ ID NO:7) and certain variants thereof. The reaction mixture is formed under conditions sufficient to transfer the sugar moiety from the donor substrate to the acceptor molecule, thereby forming the glycosylated molecule. In some embodiments, the acceptor molecule is selected from a natural product, an oligosaccharide, a glycoprotein, and a glycolipid. In some embodiments, the donor substrate is formed via conversion of a suitable hexosamine derivative to a cytidine 5′-monophosphate(CMP)-sialic acid in a one-pot reaction mixture containing asialic acid aldolase and a CMP-sialic acid synthetase.
Abstract:
The present invention provides a one-pot multi-enzyme method for preparing UDP-sugars from simple sugar starting materials. The invention also provides a one-pot multi-enzyme method for preparing oligosaccharides from simple sugar starting materials.
Abstract:
The present invention provides a one-pot multi-enzyme method for preparing UDP-sugars from simple sugar starting materials. The invention also provides a one-pot multi-enzyme method for preparing oligosaccharides from simple sugar starting materials.
Abstract:
The present invention provides novel methods for preparing glycosylated molecules such as oligosaccharides, glycolipids, and glycoproteins/peptides. Novel sialyltransferases are also disclosed. The method includes forming a reaction mixture containing an acceptor molecule, a donor substrate having a sugar moiety and a nucleotide, and a sialyltransferase selected from PmST3 (SEQ ID NO:7) and certain variants thereof. The reaction mixture is formed under conditions sufficient to transfer the sugar moiety from the donor substrate to the acceptor molecule, thereby forming the glycosylated molecule. In some embodiments, the acceptor molecule is selected from a natural product, an oligosaccharide, a glycoprotein, and a glycolipid. In some embodiments, the donor substrate is formed via conversion of a suitable hexosamine derivative to a cytidine 5′- monophosphate(CMP)-sialic acid in a one-pot reaction mixture containing asialic acid aldolase and a CMP-sialic acid synthetase.
Abstract:
The present invention provides a one-pot multi-enzyme method for preparing UDP-sugars from simple sugar starting materials. The invention also provides a one-pot multi-enzyme method for preparing oligosaccharides from simple sugar starting materials.
Abstract:
The present invention provides N-acetyl derivatives of sialic acids, including N-acetyl derivatives of Neu5Ac and Neu5Gc. Methods for preparing related precursors and a variety of sialosides are also disclosed.