Abstract:
An embodiment cell shift scheme includes abutting a first transistor cell against a second transistor cell and shifting a place and route boundary away from a polysilicon disposed between the first transistor cell and the second transistor cell. In an embodiment, the cell shift scheme includes shifting the place and route boundary to prevent a mismatch between a layout versus schematic (LVS) netlist and a post-simulation netlist.
Abstract:
An integrated circuit includes a first and a second standard cell. The first standard cell includes a first gate electrode, and a first channel region underlying the first gate electrode. The first channel region has a first channel doping concentration. The second standard cell includes a second gate electrode, and a second channel region underlying the second gate electrode. The second channel region has a second channel doping concentration. A dummy gate includes a first half and a second half in the first and the second standard cells, respectively. The first half and the second half are at the edges of the first and the second standard cells, respectively, and are abutted to each other. A dummy channel is overlapped by the dummy gate. The dummy channel has a third channel doping concentration substantially equal to a sum of the first channel doping concentration and the second channel doping concentration.
Abstract:
Embodiments of mechanisms for forming power gating cells and virtual power circuits on multiple active device layers are described in the current disclosure. Power gating cells and virtual power circuits are formed on separate active device layers to allow interconnect structure for connecting with the power source be formed on a separate level from the interconnect structure for connecting the power gating cells and the virtual power circuits. Such separation prevents these two types of interconnect structures from competing for the same space. Routings for both types of interconnect structures become easier. As a result, metal lengths of interconnect structures are reduced and the metal widths are increased. Reduced metal lengths and increased metal widths reduce resistance, improves resistance-capacitance (RC) delay and electrical performance, and improves interconnect reliability, such as reducing electro-migration.
Abstract:
Embodiments of mechanisms for forming power gating cells and virtual power circuits on multiple active device layers are described in the current disclosure. Power gating cells and virtual power circuits are formed on separate active device layers to allow interconnect structure for connecting with the power source be formed on a separate level from the interconnect structure for connecting the power gating cells and the virtual power circuits. Such separation prevents these two types of interconnect structures from competing for the same space. Routings for both types of interconnect structures become easier. As a result, metal lengths of interconnect structures are reduced and the metal widths are increased. Reduced metal lengths and increased metal widths reduce resistance, improves resistance-capacitance (RC) delay and electrical performance, and improves interconnect reliability, such as reducing electro-migration.
Abstract:
Embodiments of mechanisms for forming power gating cells and virtual power circuits on multiple active device layers are described in the current disclosure. Power gating cells and virtual power circuits are formed on separate active device layers to allow interconnect structure for connecting with the power source be formed on a separate level from the interconnect structure for connecting the power gating cells and the virtual power circuits. Such separation prevents these two types of interconnect structures from competing for the same space. Routings for both types of interconnect structures become easier. As a result, metal lengths of interconnect structures are reduced and the metal widths are increased. Reduced metal lengths and increased metal widths reduce resistance, improves resistance-capacitance (RC) delay and electrical performance, and improves interconnect reliability, such as reducing electro-migration.
Abstract:
An integrated circuit includes a first and a second standard cell. The first standard cell includes a first gate electrode, and a first channel region underlying the first gate electrode. The first channel region has a first channel doping concentration. The second standard cell includes a second gate electrode, and a second channel region underlying the second gate electrode. The second channel region has a second channel doping concentration. A dummy gate includes a first half and a second half in the first and the second standard cells, respectively. The first half and the second half are at the edges of the first and the second standard cells, respectively, and are abutted to each other. A dummy channel is overlapped by the dummy gate. The dummy channel has a third channel doping concentration substantially equal to a sum of the first channel doping concentration and the second channel doping concentration.
Abstract:
In some embodiments, a fishbone structure in a power network includes a first conductive segment in a first conductive layer running in a first direction, a plurality of second conductive segments in a second conductive layer running in a second direction and a plurality of interlayer vias between the first conductive layer and the second conductive layer. The second direction is substantially vertical to the first direction. The plurality of second conductive segments overlap with the first conductive segment. The plurality of interlayer vias are formed at where the plurality of second conductive segments overlap with the first conductive segment. Each of the plurality of second conductive segments has a width such that the first conductive segment has a first unit spacing with a first adjacent conductive line or one of the plurality of second conductive segments has a second unit spacing with a second adjacent conductive line.
Abstract:
Embodiments of mechanisms for forming power gating cells and virtual power circuits on multiple active device layers are described in the current disclosure. Power gating cells and virtual power circuits are formed on separate active device layers to allow interconnect structure for connecting with the power source be formed on a separate level from the interconnect structure for connecting the power gating cells and the virtual power circuits. Such separation prevents these two types of interconnect structures from competing for the same space. Routings for both types of interconnect structures become easier. As a result, metal lengths of interconnect structures are reduced and the metal widths are increased. Reduced metal lengths and increased metal widths reduce resistance, improves resistance-capacitance (RC) delay and electrical performance, and improves interconnect reliability, such as reducing electro-migration.
Abstract:
An integrated circuit includes a first and a second standard cell. The first standard cell includes a first gate electrode, and a first channel region underlying the first gate electrode. The first channel region has a first channel doping concentration. The second standard cell includes a second gate electrode, and a second channel region underlying the second gate electrode. The second channel region has a second channel doping concentration. A dummy gate includes a first half and a second half in the first and the second standard cells, respectively. The first half and the second half are at the edges of the first and the second standard cells, respectively, and are abutted to each other. A dummy channel is overlapped by the dummy gate. The dummy channel has a third channel doping concentration substantially equal to a sum of the first channel doping concentration and the second channel doping concentration.
Abstract:
A die includes a plurality of rows of standard cells. Each of all standard cells in the plurality of rows of standard cells includes a transistor and a source edge, wherein a source region of the transistor is adjacent to the source edge. No drain region of any transistor in the each of all standard cells is adjacent to the source region.