Abstract:
In an embodiment, a device includes: an electrode configured to change a contact angle of a liquid droplet above the electrode when a first voltage is applied to the electrode; a sensing film overlaying the electrode, wherein the electrode is configured for assessment of a state of the liquid droplet based on a second voltage sensed at the electrode; a reference electrode above the electrode, the reference electrode configured to provide a reference voltage; and a microfluidic channel between the electrode and the reference electrode, wherein the microfluidic channel is configured to manipulate the liquid droplet using the electrode.
Abstract:
An IC includes a source region and a drain region in a semiconductor layer. A channel region is between the source region and the drain region. A sensing well is on a back surface of the semiconductor layer and over the channel region. An interconnect structure is on a front surface of the semiconductor layer opposite the back surface of the semiconductor layer. A biosensing film lines the sensing well and contacts a bottom surface of the sensing well that is defined by the semiconductor layer. A coating of selective binding agent is over the biosensing film and configured to bind with a cardiac cell.
Abstract:
A biologically sensitive field effect transistor includes a substrate, a first control gate and a second control gate. The substrate has a first side and a second side opposite to the first side, a source region and a drain region. The first control gate is disposed on the first side of the substrate. The second control gate is disposed on the second side of the substrate. The second control gate includes a sensing film disposed on the second side of the substrate. A voltage biasing between the source region and the second control gate is smaller than a threshold voltage of the second control gate.
Abstract:
In an embodiment, a device includes: an electrode configured to change a contact angle of a liquid droplet above the electrode when a first voltage is applied to the electrode; a sensing film overlaying the electrode, wherein the electrode is configured for assessment of a state of the liquid droplet based on a second voltage sensed at the electrode; a reference electrode above the electrode, the reference electrode configured to provide a reference voltage; and a microfluidic channel between the electrode and the reference electrode, wherein the microfluidic channel is configured to manipulate the liquid droplet using the electrode.
Abstract:
A biologically sensitive field effect transistor includes a substrate, a first control gate and a second control gate. The substrate has a first side and a second side opposite to the first side, a source region and a drain region. The first control gate is disposed on the first side of the substrate. The second control gate is disposed on the second side of the substrate. The second control gate includes a sensing film disposed on the second side of the substrate. A voltage biasing between the source region and the second control gate is smaller than a threshold voltage of the second control gate.
Abstract:
A device layer of an integrated circuit device includes a semiconductor active layer spanning a plurality of device regions. Each of the device regions has a heating element, a temperature sensor, and bioFETs in the device layer. The bioFETs have source/drain regions and channel regions in the semiconductor active layer and fluid gates exposed on a surface for fluid interfacing on one side of the device layer. A multilayer metal interconnect structure is disposed on the opposite side of the device layer. This structure places the heating elements in proximity to the fluid gates enabling localized heating, precision heating, and multiplexed temperature control for multiplexed bio-sensing applications.
Abstract:
A device includes a first biosensor of a biosensor array; a second biosensor of a biosensor array; a readout circuit electrically connected to the biosensor array; a decoder electrically connected to the biosensor array; a voltage generator electrically connected to the biosensor array; and a decision system electrically connected to the voltage generator and the readout circuit.
Abstract:
A device layer of an integrated circuit device includes a semiconductor active layer spanning a plurality of device regions. Each of the device regions has a heating element, a temperature sensor, and bioFETs in the device layer. The bioFETs have source/drain regions and channel regions in the semiconductor active layer and fluid gates exposed on a surface for fluid interfacing on one side of the device layer. A multilayer metal interconnect structure is disposed on the opposite side of the device layer. This structure places the heating elements in proximity to the fluid gates enabling localized heating, precision heating, and multiplexed temperature control for multiplexed bio-sensing applications.
Abstract:
Cell monitoring apparatus includes sensing chip and channel module. Sensing chip includes channel region, source and drain regions, and sensing film. The channel region includes first semiconductor material. The source and drain regions are disposed at opposite sides of the channel region, and include a second semiconductor material. Sensing film is disposed on the channel region at a sensing surface of the sensing chip. Channel module is disposed on the sensing surface of sensing chip. A microfluidic channel is formed between the sensing surface of the sensing chip and a proximal surface of the channel module. The microfluidic channel includes a culture chamber and a micro-well. The culture chamber is concave into the proximal surface of the channel module, and overlies the channel region. The micro-well is concave into a side of the culture chamber, and directly faces the sensing film.
Abstract:
An IC includes a source region and a drain region in a semiconductor layer. A channel region is between the source region and the drain region. A sensing well is on a back surface of the semiconductor layer and over the channel region. An interconnect structure is on a front surface of the semiconductor layer opposite the back surface of the semiconductor layer. A biosensing film lines the sensing well and contacts a bottom surface of the sensing well that is defined by the semiconductor layer. A coating of selective binding agent is over the biosensing film and configured to bind with a cardiac cell.